Loading…
miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4
microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 c...
Saved in:
Published in: | PloS one 2013-09, Vol.8 (9), p.e73589-e73589 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123 |
container_end_page | e73589 |
container_issue | 9 |
container_start_page | e73589 |
container_title | PloS one |
container_volume | 8 |
creator | Winbanks, Catherine E Beyer, Claudia Hagg, Adam Qian, Hongwei Sepulveda, Patricio V Gregorevic, Paul |
description | microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature. |
doi_str_mv | 10.1371/journal.pone.0073589 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1429411649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478442036</galeid><doaj_id>oai_doaj_org_article_6b0f85ce7e7443f1af26ddd81ca875ea</doaj_id><sourcerecordid>A478442036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgujFjPlq2t4Iw_ixAwsL68edhDQ9mWZom27SLs6_N3W6y1T2QnLRkD7ve3JOzomilxitME3xh70dXCvrVWdbWCGU0iTLH0XnOKdkyQmij0_2Z9Ez7_cIJTTj_Gl0RhgiNMuy8-hXY66XBPHYQefAe_BxdejA9c521SG2Om4OdgetUbGCuvZxMfRxa_u4GbyqIdamAOfjWyNj01amML2x7Si7-LTesOfREy1rDy-m7yL68eXz983F8vLq63azvlwqnpN-CRlDimCeMJRCAiXhiBYJV6okOWiWgsY5xiVXGpO0KDnKuQz3T0DnicSY0EX0-ujb1daLqTJeYEZyhjFneSC2R6K0ci86ZxrpDsJKI_4eWLcT0vUmpCR4gXSWKEghZYxqLDXhZVlmWMksTUAGr49TtKFooFTQ9k7WM9P5n9ZUYmdvBU2TnIXnWETvJgNnbwbwvWiMH8srW7DDeG9KUMo5GTN78w_6cHYTtZMhAdNqG-Kq0VSsWZqxMSgP1OoBKqwSGqNCG2kTzmeC9zNBYHr43e_k4L3Yfrv-f_bq55x9e8JWIOu-8rYext7xc5AdQeWs9w70fZExEuMU3FVDjFMgpikIslenD3Qvumt7-geJmADi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429411649</pqid></control><display><type>article</type><title>miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Winbanks, Catherine E ; Beyer, Claudia ; Hagg, Adam ; Qian, Hongwei ; Sepulveda, Patricio V ; Gregorevic, Paul</creator><contributor>Ervasti, James M.</contributor><creatorcontrib>Winbanks, Catherine E ; Beyer, Claudia ; Hagg, Adam ; Qian, Hongwei ; Sepulveda, Patricio V ; Gregorevic, Paul ; Ervasti, James M.</creatorcontrib><description>microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073589</identifier><identifier>PMID: 24023888</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Analysis ; Animal models ; Animals ; Atrophy ; Cell culture ; Cell Line ; Cloning ; Denervation ; Dependovirus - genetics ; Development and progression ; Diabetes ; Drug development ; Follistatin ; Gene expression ; Genetic aspects ; Genetic Vectors - genetics ; Heart ; Histone deacetylase ; Histone Deacetylases - genetics ; Hypertrophy ; Hypertrophy - genetics ; In vivo methods and tests ; Inhibition ; Metabolism ; Mice ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Muscle Development ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - enzymology ; Muscle Fibers, Skeletal - pathology ; Muscle Fibers, Skeletal - physiology ; Muscles ; Muscular Atrophy - genetics ; Musculoskeletal system ; Myotubes ; Nutrition research ; Obesity ; Overexpression ; Physiological aspects ; Physiology ; Plasmids ; Protein biosynthesis ; Protein synthesis ; Proteins ; Ribonucleic acid ; RNA ; Rodents ; Skeletal muscle ; Sodium ; Sodium butyrate ; Transferases ; Valproic acid</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e73589-e73589</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Winbanks et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Winbanks et al 2013 Winbanks et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123</citedby><cites>FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1429411649/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1429411649?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24023888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ervasti, James M.</contributor><creatorcontrib>Winbanks, Catherine E</creatorcontrib><creatorcontrib>Beyer, Claudia</creatorcontrib><creatorcontrib>Hagg, Adam</creatorcontrib><creatorcontrib>Qian, Hongwei</creatorcontrib><creatorcontrib>Sepulveda, Patricio V</creatorcontrib><creatorcontrib>Gregorevic, Paul</creatorcontrib><title>miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cloning</subject><subject>Denervation</subject><subject>Dependovirus - genetics</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Drug development</subject><subject>Follistatin</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic Vectors - genetics</subject><subject>Heart</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - genetics</subject><subject>Hypertrophy</subject><subject>Hypertrophy - genetics</subject><subject>In vivo methods and tests</subject><subject>Inhibition</subject><subject>Metabolism</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Muscle Development</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular Atrophy - genetics</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Overexpression</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><subject>Sodium</subject><subject>Sodium butyrate</subject><subject>Transferases</subject><subject>Valproic acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgujFjPlq2t4Iw_ixAwsL68edhDQ9mWZom27SLs6_N3W6y1T2QnLRkD7ve3JOzomilxitME3xh70dXCvrVWdbWCGU0iTLH0XnOKdkyQmij0_2Z9Ez7_cIJTTj_Gl0RhgiNMuy8-hXY66XBPHYQefAe_BxdejA9c521SG2Om4OdgetUbGCuvZxMfRxa_u4GbyqIdamAOfjWyNj01amML2x7Si7-LTesOfREy1rDy-m7yL68eXz983F8vLq63azvlwqnpN-CRlDimCeMJRCAiXhiBYJV6okOWiWgsY5xiVXGpO0KDnKuQz3T0DnicSY0EX0-ujb1daLqTJeYEZyhjFneSC2R6K0ci86ZxrpDsJKI_4eWLcT0vUmpCR4gXSWKEghZYxqLDXhZVlmWMksTUAGr49TtKFooFTQ9k7WM9P5n9ZUYmdvBU2TnIXnWETvJgNnbwbwvWiMH8srW7DDeG9KUMo5GTN78w_6cHYTtZMhAdNqG-Kq0VSsWZqxMSgP1OoBKqwSGqNCG2kTzmeC9zNBYHr43e_k4L3Yfrv-f_bq55x9e8JWIOu-8rYext7xc5AdQeWs9w70fZExEuMU3FVDjFMgpikIslenD3Qvumt7-geJmADi</recordid><startdate>20130902</startdate><enddate>20130902</enddate><creator>Winbanks, Catherine E</creator><creator>Beyer, Claudia</creator><creator>Hagg, Adam</creator><creator>Qian, Hongwei</creator><creator>Sepulveda, Patricio V</creator><creator>Gregorevic, Paul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130902</creationdate><title>miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4</title><author>Winbanks, Catherine E ; Beyer, Claudia ; Hagg, Adam ; Qian, Hongwei ; Sepulveda, Patricio V ; Gregorevic, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cloning</topic><topic>Denervation</topic><topic>Dependovirus - genetics</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Drug development</topic><topic>Follistatin</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic Vectors - genetics</topic><topic>Heart</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - genetics</topic><topic>Hypertrophy</topic><topic>Hypertrophy - genetics</topic><topic>In vivo methods and tests</topic><topic>Inhibition</topic><topic>Metabolism</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Muscle Development</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular Atrophy - genetics</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Overexpression</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><topic>Sodium</topic><topic>Sodium butyrate</topic><topic>Transferases</topic><topic>Valproic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winbanks, Catherine E</creatorcontrib><creatorcontrib>Beyer, Claudia</creatorcontrib><creatorcontrib>Hagg, Adam</creatorcontrib><creatorcontrib>Qian, Hongwei</creatorcontrib><creatorcontrib>Sepulveda, Patricio V</creatorcontrib><creatorcontrib>Gregorevic, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winbanks, Catherine E</au><au>Beyer, Claudia</au><au>Hagg, Adam</au><au>Qian, Hongwei</au><au>Sepulveda, Patricio V</au><au>Gregorevic, Paul</au><au>Ervasti, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-02</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e73589</spage><epage>e73589</epage><pages>e73589-e73589</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24023888</pmid><doi>10.1371/journal.pone.0073589</doi><tpages>e73589</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-09, Vol.8 (9), p.e73589-e73589 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1429411649 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adaptation Analysis Animal models Animals Atrophy Cell culture Cell Line Cloning Denervation Dependovirus - genetics Development and progression Diabetes Drug development Follistatin Gene expression Genetic aspects Genetic Vectors - genetics Heart Histone deacetylase Histone Deacetylases - genetics Hypertrophy Hypertrophy - genetics In vivo methods and tests Inhibition Metabolism Mice MicroRNA MicroRNAs MicroRNAs - genetics miRNA Muscle Development Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - enzymology Muscle Fibers, Skeletal - pathology Muscle Fibers, Skeletal - physiology Muscles Muscular Atrophy - genetics Musculoskeletal system Myotubes Nutrition research Obesity Overexpression Physiological aspects Physiology Plasmids Protein biosynthesis Protein synthesis Proteins Ribonucleic acid RNA Rodents Skeletal muscle Sodium Sodium butyrate Transferases Valproic acid |
title | miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-206%20represses%20hypertrophy%20of%20myogenic%20cells%20but%20not%20muscle%20fibers%20via%20inhibition%20of%20HDAC4&rft.jtitle=PloS%20one&rft.au=Winbanks,%20Catherine%20E&rft.date=2013-09-02&rft.volume=8&rft.issue=9&rft.spage=e73589&rft.epage=e73589&rft.pages=e73589-e73589&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073589&rft_dat=%3Cgale_plos_%3EA478442036%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-e840c2165407e5ed2603b56ccd29ef47ef1911d6cf127bd6096a2385ef95a1123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429411649&rft_id=info:pmid/24023888&rft_galeid=A478442036&rfr_iscdi=true |