Loading…
HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation
Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs) activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. Howeve...
Saved in:
Published in: | PloS one 2013-09, Vol.8 (9), p.e73785-e73785 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973 |
container_end_page | e73785 |
container_issue | 9 |
container_start_page | e73785 |
container_title | PloS one |
container_volume | 8 |
creator | Turgeon, Naomie Blais, Mylène Gagné, Julie-Moore Tardif, Véronique Boudreau, François Perreault, Nathalie Asselin, Claude |
description | Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs) activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1) increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2) tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3) loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4) chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression. Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation. |
doi_str_mv | 10.1371/journal.pone.0073785 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1430457120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478415945</galeid><doaj_id>oai_doaj_org_article_5b0c670079274fc8962398735d3a5b06</doaj_id><sourcerecordid>A478415945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973</originalsourceid><addsrcrecordid>eNqNk01v3CAQhq2qUZOm_QdVa6lS1Rx2CwaMfam02n5kpUiR-nVFGLCXFTZbsKPm33ecdaJ1lUPFgQGeeYcZmCR5hdESE44_7PwQOumWe9-ZJUKc8II9Sc5wSbJFniHy9Mg-TZ7HuEOIkSLPnyWnGUUUobw4S24uP63WOJWdTkcrS4OJfZC2S_utSW3Xw9JCGDBrJ9tW9j7cjhCEjSatRrsZnASoOcbN3oKAs2Aq41yqbV2bYLreAuq7F8lJLV00L6f5PPn55fOP9eXi6vrrZr26WijOin5R0EpjrQirSJHlJddal1gTnCGMNYLMykJWhiqjMEwIV8xQyJHVSBeElJycJ28Ounvno5hKFgWmBFHGQQeIzYHQXu7EPthWhlvhpRV3Gz40QobeKmcEq5DKOZS6zDitVVHmGSkLTpgmEs5y0Po4RRuq1mgF6QbpZqLzk85uReNvBOE5RYSBwPtJIPjfA9RStDaO9ZOd8cPdvUk2XiED9O0_6OPZTVQjIQF4Qw9x1SgqVpQXFLOSjmGXj1AwtGmtgv9VW9ifOVzMHIDpzZ--kUOMYvP92_-z17_m7Lsjdmuk67fRu2H8MnEO0gOogo8xmPqhyBiJsT3uqyHG9hBTe4Db6-MHenC67wfyF-uFCcY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430457120</pqid></control><display><type>article</type><title>HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Turgeon, Naomie ; Blais, Mylène ; Gagné, Julie-Moore ; Tardif, Véronique ; Boudreau, François ; Perreault, Nathalie ; Asselin, Claude</creator><contributor>Mizoguchi, Emiko</contributor><creatorcontrib>Turgeon, Naomie ; Blais, Mylène ; Gagné, Julie-Moore ; Tardif, Véronique ; Boudreau, François ; Perreault, Nathalie ; Asselin, Claude ; Mizoguchi, Emiko</creatorcontrib><description>Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs) activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1) increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2) tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3) loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4) chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression. Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073785</identifier><identifier>PMID: 24040068</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetates ; Acetylation ; Analysis ; Animals ; Apoptosis ; Blotting, Western ; Body Weight - genetics ; Cancer ; Caspase ; Caspase-3 ; Cell differentiation ; Cell Differentiation - genetics ; Cell growth ; Cell Movement - genetics ; Cell Proliferation ; Colon ; Colon - metabolism ; Colon - pathology ; Cyclin D1 ; Deacetylation ; Defects ; Deoxyribonucleic acid ; Dextran ; Differentiation (biology) ; DNA ; DNA binding proteins ; DNA microarrays ; Epigenetics ; Epithelial cells ; Epithelial Cells - metabolism ; Gene expression ; Genes ; Goblet cells ; HDAC2 protein ; Histone deacetylase ; Histone Deacetylase 1 - genetics ; Histone Deacetylase 1 - metabolism ; Histone Deacetylase 2 - genetics ; Histone Deacetylase 2 - metabolism ; Histones ; Homeostasis ; Inflammation ; Inflammation - genetics ; Inflammatory response ; Intestine ; Intestines - metabolism ; Intestines - pathology ; Intestines - physiopathology ; Jejunum ; Metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Microbiota ; Notch1 protein ; Oligonucleotide Array Sequence Analysis ; Organ Size - genetics ; Permeability ; Phosphorylation ; Polymerase chain reaction ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Rodents ; Science ; Small intestine ; Stat3 protein ; Stem cells ; TOR protein ; Transcriptome</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e73785-e73785</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Turgeon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Turgeon et al 2013 Turgeon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973</citedby><cites>FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1430457120/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1430457120?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24040068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mizoguchi, Emiko</contributor><creatorcontrib>Turgeon, Naomie</creatorcontrib><creatorcontrib>Blais, Mylène</creatorcontrib><creatorcontrib>Gagné, Julie-Moore</creatorcontrib><creatorcontrib>Tardif, Véronique</creatorcontrib><creatorcontrib>Boudreau, François</creatorcontrib><creatorcontrib>Perreault, Nathalie</creatorcontrib><creatorcontrib>Asselin, Claude</creatorcontrib><title>HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs) activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1) increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2) tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3) loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4) chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression. Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.</description><subject>Acetates</subject><subject>Acetylation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Blotting, Western</subject><subject>Body Weight - genetics</subject><subject>Cancer</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell growth</subject><subject>Cell Movement - genetics</subject><subject>Cell Proliferation</subject><subject>Colon</subject><subject>Colon - metabolism</subject><subject>Colon - pathology</subject><subject>Cyclin D1</subject><subject>Deacetylation</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Dextran</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA microarrays</subject><subject>Epigenetics</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Goblet cells</subject><subject>HDAC2 protein</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase 1 - genetics</subject><subject>Histone Deacetylase 1 - metabolism</subject><subject>Histone Deacetylase 2 - genetics</subject><subject>Histone Deacetylase 2 - metabolism</subject><subject>Histones</subject><subject>Homeostasis</subject><subject>Inflammation</subject><subject>Inflammation - genetics</subject><subject>Inflammatory response</subject><subject>Intestine</subject><subject>Intestines - metabolism</subject><subject>Intestines - pathology</subject><subject>Intestines - physiopathology</subject><subject>Jejunum</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Microbiota</subject><subject>Notch1 protein</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Organ Size - genetics</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Science</subject><subject>Small intestine</subject><subject>Stat3 protein</subject><subject>Stem cells</subject><subject>TOR protein</subject><subject>Transcriptome</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v3CAQhq2qUZOm_QdVa6lS1Rx2CwaMfam02n5kpUiR-nVFGLCXFTZbsKPm33ecdaJ1lUPFgQGeeYcZmCR5hdESE44_7PwQOumWe9-ZJUKc8II9Sc5wSbJFniHy9Mg-TZ7HuEOIkSLPnyWnGUUUobw4S24uP63WOJWdTkcrS4OJfZC2S_utSW3Xw9JCGDBrJ9tW9j7cjhCEjSatRrsZnASoOcbN3oKAs2Aq41yqbV2bYLreAuq7F8lJLV00L6f5PPn55fOP9eXi6vrrZr26WijOin5R0EpjrQirSJHlJddal1gTnCGMNYLMykJWhiqjMEwIV8xQyJHVSBeElJycJ28Ounvno5hKFgWmBFHGQQeIzYHQXu7EPthWhlvhpRV3Gz40QobeKmcEq5DKOZS6zDitVVHmGSkLTpgmEs5y0Po4RRuq1mgF6QbpZqLzk85uReNvBOE5RYSBwPtJIPjfA9RStDaO9ZOd8cPdvUk2XiED9O0_6OPZTVQjIQF4Qw9x1SgqVpQXFLOSjmGXj1AwtGmtgv9VW9ifOVzMHIDpzZ--kUOMYvP92_-z17_m7Lsjdmuk67fRu2H8MnEO0gOogo8xmPqhyBiJsT3uqyHG9hBTe4Db6-MHenC67wfyF-uFCcY</recordid><startdate>20130905</startdate><enddate>20130905</enddate><creator>Turgeon, Naomie</creator><creator>Blais, Mylène</creator><creator>Gagné, Julie-Moore</creator><creator>Tardif, Véronique</creator><creator>Boudreau, François</creator><creator>Perreault, Nathalie</creator><creator>Asselin, Claude</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130905</creationdate><title>HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation</title><author>Turgeon, Naomie ; Blais, Mylène ; Gagné, Julie-Moore ; Tardif, Véronique ; Boudreau, François ; Perreault, Nathalie ; Asselin, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetates</topic><topic>Acetylation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Blotting, Western</topic><topic>Body Weight - genetics</topic><topic>Cancer</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell growth</topic><topic>Cell Movement - genetics</topic><topic>Cell Proliferation</topic><topic>Colon</topic><topic>Colon - metabolism</topic><topic>Colon - pathology</topic><topic>Cyclin D1</topic><topic>Deacetylation</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Dextran</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA microarrays</topic><topic>Epigenetics</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Goblet cells</topic><topic>HDAC2 protein</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase 1 - genetics</topic><topic>Histone Deacetylase 1 - metabolism</topic><topic>Histone Deacetylase 2 - genetics</topic><topic>Histone Deacetylase 2 - metabolism</topic><topic>Histones</topic><topic>Homeostasis</topic><topic>Inflammation</topic><topic>Inflammation - genetics</topic><topic>Inflammatory response</topic><topic>Intestine</topic><topic>Intestines - metabolism</topic><topic>Intestines - pathology</topic><topic>Intestines - physiopathology</topic><topic>Jejunum</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Microbiota</topic><topic>Notch1 protein</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Organ Size - genetics</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Science</topic><topic>Small intestine</topic><topic>Stat3 protein</topic><topic>Stem cells</topic><topic>TOR protein</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turgeon, Naomie</creatorcontrib><creatorcontrib>Blais, Mylène</creatorcontrib><creatorcontrib>Gagné, Julie-Moore</creatorcontrib><creatorcontrib>Tardif, Véronique</creatorcontrib><creatorcontrib>Boudreau, François</creatorcontrib><creatorcontrib>Perreault, Nathalie</creatorcontrib><creatorcontrib>Asselin, Claude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turgeon, Naomie</au><au>Blais, Mylène</au><au>Gagné, Julie-Moore</au><au>Tardif, Véronique</au><au>Boudreau, François</au><au>Perreault, Nathalie</au><au>Asselin, Claude</au><au>Mizoguchi, Emiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-05</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e73785</spage><epage>e73785</epage><pages>e73785-e73785</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs) activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1) increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2) tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3) loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4) chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression. Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24040068</pmid><doi>10.1371/journal.pone.0073785</doi><tpages>e73785</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-09, Vol.8 (9), p.e73785-e73785 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1430457120 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Acetates Acetylation Analysis Animals Apoptosis Blotting, Western Body Weight - genetics Cancer Caspase Caspase-3 Cell differentiation Cell Differentiation - genetics Cell growth Cell Movement - genetics Cell Proliferation Colon Colon - metabolism Colon - pathology Cyclin D1 Deacetylation Defects Deoxyribonucleic acid Dextran Differentiation (biology) DNA DNA binding proteins DNA microarrays Epigenetics Epithelial cells Epithelial Cells - metabolism Gene expression Genes Goblet cells HDAC2 protein Histone deacetylase Histone Deacetylase 1 - genetics Histone Deacetylase 1 - metabolism Histone Deacetylase 2 - genetics Histone Deacetylase 2 - metabolism Histones Homeostasis Inflammation Inflammation - genetics Inflammatory response Intestine Intestines - metabolism Intestines - pathology Intestines - physiopathology Jejunum Metabolism Mice Mice, Knockout Mice, Transgenic Microbiota Notch1 protein Oligonucleotide Array Sequence Analysis Organ Size - genetics Permeability Phosphorylation Polymerase chain reaction Proteins Reverse Transcriptase Polymerase Chain Reaction Rodents Science Small intestine Stat3 protein Stem cells TOR protein Transcriptome |
title | HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC1%20and%20HDAC2%20restrain%20the%20intestinal%20inflammatory%20response%20by%20regulating%20intestinal%20epithelial%20cell%20differentiation&rft.jtitle=PloS%20one&rft.au=Turgeon,%20Naomie&rft.date=2013-09-05&rft.volume=8&rft.issue=9&rft.spage=e73785&rft.epage=e73785&rft.pages=e73785-e73785&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073785&rft_dat=%3Cgale_plos_%3EA478415945%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-84bd1dc35b382697ddd91d312011d062098abe4cec1be401b5e45385f0d833973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1430457120&rft_id=info:pmid/24040068&rft_galeid=A478415945&rfr_iscdi=true |