Loading…

Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells

Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2013-07, Vol.9 (7), p.e1003122-e1003122
Main Authors: Shi, Changji, Huang, Chuan-Hsiang, Devreotes, Peter N, Iglesias, Pablo A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573
cites cdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573
container_end_page e1003122
container_issue 7
container_start_page e1003122
container_title PLoS computational biology
container_volume 9
creator Shi, Changji
Huang, Chuan-Hsiang
Devreotes, Peter N
Iglesias, Pablo A
description Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.
doi_str_mv 10.1371/journal.pcbi.1003122
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1430783028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341456424</galeid><doaj_id>oai_doaj_org_article_9e877a84131a43c8a9f83b8b84e322b4</doaj_id><sourcerecordid>A341456424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</originalsourceid><addsrcrecordid>eNqVkk1r3DAQhk1padK0_6C0PraQ3Wos2ZIvgRD6sRBa6MdZSPJ4V4vW2kpySP595awTsseig4bRM--MXqYo3gJZAuXwaevHMCi33Bttl0AIhap6VpxCXdMFp7V4_iQ-KV7FuM1MLdrmZXFSUdFA05DTwq-GhEGZZP1Q-r7c-WSdTXfnZWcD3qeVKyMO0Q7r81INXbn3ToWMZLYbHcYycwFVylHaYKlxo26sD3GSMxvMiuo2F5cGnYuvixe9chHfzPdZ8efL599X3xbXP76uri6vF6bhkBYVaOwpsr5vDRiGhhgQqNoWgepGcwStVdvXukaoGBXcmKYHoivWtdDVnJ4V7w-6e-ejnL2KEhglXFBSiUysDkTn1Vbug92pcCe9svI-4cNaqpCscShbFJwrwYCCYtSI3FlQLbRgSKtKs6x1MXcb9Q47g0MKyh2JHr8MdiPX_kZSTqBpmyzwYRYI_u-IMcmdjZNhakA_TnMTIKKt-IQuD-ha5dHs0PusaPLpcGeNH7C3OX9JGbC6YdU03MejgswkvE1rNcYoV79-_gf7_ZhlB9YEH2PA_vG_QOS0og-2y2lF5byiuezdU68eix52kv4DpDLllQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1401089276</pqid></control><display><type>article</type><title>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Shi, Changji ; Huang, Chuan-Hsiang ; Devreotes, Peter N ; Iglesias, Pablo A</creator><creatorcontrib>Shi, Changji ; Huang, Chuan-Hsiang ; Devreotes, Peter N ; Iglesias, Pablo A</creatorcontrib><description>Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003122</identifier><identifier>PMID: 23861660</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Biology ; Cell migration ; Cell Polarity ; Chemotaxis ; Computational biology ; Cytoskeleton ; Experiments ; Mathematical models ; Migration ; Motility ; Simulation</subject><ispartof>PLoS computational biology, 2013-07, Vol.9 (7), p.e1003122-e1003122</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Shi et al 2013 Shi et al</rights><rights>2013 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shi C, Huang C-H, Devreotes PN, Iglesias PA (2013) Interaction of Motility, Directional Sensing, and Polarity Modules Recreates the Behaviors of Chemotaxing Cells. PLoS Comput Biol 9(7): e1003122. doi:10.1371/journal.pcbi.1003122</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</citedby><cites>FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701696/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701696/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Changji</creatorcontrib><creatorcontrib>Huang, Chuan-Hsiang</creatorcontrib><creatorcontrib>Devreotes, Peter N</creatorcontrib><creatorcontrib>Iglesias, Pablo A</creatorcontrib><title>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.</description><subject>Behavior</subject><subject>Biology</subject><subject>Cell migration</subject><subject>Cell Polarity</subject><subject>Chemotaxis</subject><subject>Computational biology</subject><subject>Cytoskeleton</subject><subject>Experiments</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Motility</subject><subject>Simulation</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkk1r3DAQhk1padK0_6C0PraQ3Wos2ZIvgRD6sRBa6MdZSPJ4V4vW2kpySP595awTsseig4bRM--MXqYo3gJZAuXwaevHMCi33Bttl0AIhap6VpxCXdMFp7V4_iQ-KV7FuM1MLdrmZXFSUdFA05DTwq-GhEGZZP1Q-r7c-WSdTXfnZWcD3qeVKyMO0Q7r81INXbn3ToWMZLYbHcYycwFVylHaYKlxo26sD3GSMxvMiuo2F5cGnYuvixe9chHfzPdZ8efL599X3xbXP76uri6vF6bhkBYVaOwpsr5vDRiGhhgQqNoWgepGcwStVdvXukaoGBXcmKYHoivWtdDVnJ4V7w-6e-ejnL2KEhglXFBSiUysDkTn1Vbug92pcCe9svI-4cNaqpCscShbFJwrwYCCYtSI3FlQLbRgSKtKs6x1MXcb9Q47g0MKyh2JHr8MdiPX_kZSTqBpmyzwYRYI_u-IMcmdjZNhakA_TnMTIKKt-IQuD-ha5dHs0PusaPLpcGeNH7C3OX9JGbC6YdU03MejgswkvE1rNcYoV79-_gf7_ZhlB9YEH2PA_vG_QOS0og-2y2lF5byiuezdU68eix52kv4DpDLllQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Shi, Changji</creator><creator>Huang, Chuan-Hsiang</creator><creator>Devreotes, Peter N</creator><creator>Iglesias, Pablo A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130701</creationdate><title>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</title><author>Shi, Changji ; Huang, Chuan-Hsiang ; Devreotes, Peter N ; Iglesias, Pablo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Behavior</topic><topic>Biology</topic><topic>Cell migration</topic><topic>Cell Polarity</topic><topic>Chemotaxis</topic><topic>Computational biology</topic><topic>Cytoskeleton</topic><topic>Experiments</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Motility</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Changji</creatorcontrib><creatorcontrib>Huang, Chuan-Hsiang</creatorcontrib><creatorcontrib>Devreotes, Peter N</creatorcontrib><creatorcontrib>Iglesias, Pablo A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Changji</au><au>Huang, Chuan-Hsiang</au><au>Devreotes, Peter N</au><au>Iglesias, Pablo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>9</volume><issue>7</issue><spage>e1003122</spage><epage>e1003122</epage><pages>e1003122-e1003122</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23861660</pmid><doi>10.1371/journal.pcbi.1003122</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-07, Vol.9 (7), p.e1003122-e1003122
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1430783028
source Publicly Available Content Database; PubMed Central
subjects Behavior
Biology
Cell migration
Cell Polarity
Chemotaxis
Computational biology
Cytoskeleton
Experiments
Mathematical models
Migration
Motility
Simulation
title Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20motility,%20directional%20sensing,%20and%20polarity%20modules%20recreates%20the%20behaviors%20of%20chemotaxing%20cells&rft.jtitle=PLoS%20computational%20biology&rft.au=Shi,%20Changji&rft.date=2013-07-01&rft.volume=9&rft.issue=7&rft.spage=e1003122&rft.epage=e1003122&rft.pages=e1003122-e1003122&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003122&rft_dat=%3Cgale_plos_%3EA341456424%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1401089276&rft_id=info:pmid/23861660&rft_galeid=A341456424&rfr_iscdi=true