Loading…
Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells
Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of...
Saved in:
Published in: | PLoS computational biology 2013-07, Vol.9 (7), p.e1003122-e1003122 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573 |
---|---|
cites | cdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573 |
container_end_page | e1003122 |
container_issue | 7 |
container_start_page | e1003122 |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Shi, Changji Huang, Chuan-Hsiang Devreotes, Peter N Iglesias, Pablo A |
description | Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines. |
doi_str_mv | 10.1371/journal.pcbi.1003122 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1430783028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341456424</galeid><doaj_id>oai_doaj_org_article_9e877a84131a43c8a9f83b8b84e322b4</doaj_id><sourcerecordid>A341456424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</originalsourceid><addsrcrecordid>eNqVkk1r3DAQhk1padK0_6C0PraQ3Wos2ZIvgRD6sRBa6MdZSPJ4V4vW2kpySP595awTsseig4bRM--MXqYo3gJZAuXwaevHMCi33Bttl0AIhap6VpxCXdMFp7V4_iQ-KV7FuM1MLdrmZXFSUdFA05DTwq-GhEGZZP1Q-r7c-WSdTXfnZWcD3qeVKyMO0Q7r81INXbn3ToWMZLYbHcYycwFVylHaYKlxo26sD3GSMxvMiuo2F5cGnYuvixe9chHfzPdZ8efL599X3xbXP76uri6vF6bhkBYVaOwpsr5vDRiGhhgQqNoWgepGcwStVdvXukaoGBXcmKYHoivWtdDVnJ4V7w-6e-ejnL2KEhglXFBSiUysDkTn1Vbug92pcCe9svI-4cNaqpCscShbFJwrwYCCYtSI3FlQLbRgSKtKs6x1MXcb9Q47g0MKyh2JHr8MdiPX_kZSTqBpmyzwYRYI_u-IMcmdjZNhakA_TnMTIKKt-IQuD-ha5dHs0PusaPLpcGeNH7C3OX9JGbC6YdU03MejgswkvE1rNcYoV79-_gf7_ZhlB9YEH2PA_vG_QOS0og-2y2lF5byiuezdU68eix52kv4DpDLllQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1401089276</pqid></control><display><type>article</type><title>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Shi, Changji ; Huang, Chuan-Hsiang ; Devreotes, Peter N ; Iglesias, Pablo A</creator><creatorcontrib>Shi, Changji ; Huang, Chuan-Hsiang ; Devreotes, Peter N ; Iglesias, Pablo A</creatorcontrib><description>Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003122</identifier><identifier>PMID: 23861660</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Biology ; Cell migration ; Cell Polarity ; Chemotaxis ; Computational biology ; Cytoskeleton ; Experiments ; Mathematical models ; Migration ; Motility ; Simulation</subject><ispartof>PLoS computational biology, 2013-07, Vol.9 (7), p.e1003122-e1003122</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Shi et al 2013 Shi et al</rights><rights>2013 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shi C, Huang C-H, Devreotes PN, Iglesias PA (2013) Interaction of Motility, Directional Sensing, and Polarity Modules Recreates the Behaviors of Chemotaxing Cells. PLoS Comput Biol 9(7): e1003122. doi:10.1371/journal.pcbi.1003122</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</citedby><cites>FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701696/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701696/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Changji</creatorcontrib><creatorcontrib>Huang, Chuan-Hsiang</creatorcontrib><creatorcontrib>Devreotes, Peter N</creatorcontrib><creatorcontrib>Iglesias, Pablo A</creatorcontrib><title>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.</description><subject>Behavior</subject><subject>Biology</subject><subject>Cell migration</subject><subject>Cell Polarity</subject><subject>Chemotaxis</subject><subject>Computational biology</subject><subject>Cytoskeleton</subject><subject>Experiments</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Motility</subject><subject>Simulation</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkk1r3DAQhk1padK0_6C0PraQ3Wos2ZIvgRD6sRBa6MdZSPJ4V4vW2kpySP595awTsseig4bRM--MXqYo3gJZAuXwaevHMCi33Bttl0AIhap6VpxCXdMFp7V4_iQ-KV7FuM1MLdrmZXFSUdFA05DTwq-GhEGZZP1Q-r7c-WSdTXfnZWcD3qeVKyMO0Q7r81INXbn3ToWMZLYbHcYycwFVylHaYKlxo26sD3GSMxvMiuo2F5cGnYuvixe9chHfzPdZ8efL599X3xbXP76uri6vF6bhkBYVaOwpsr5vDRiGhhgQqNoWgepGcwStVdvXukaoGBXcmKYHoivWtdDVnJ4V7w-6e-ejnL2KEhglXFBSiUysDkTn1Vbug92pcCe9svI-4cNaqpCscShbFJwrwYCCYtSI3FlQLbRgSKtKs6x1MXcb9Q47g0MKyh2JHr8MdiPX_kZSTqBpmyzwYRYI_u-IMcmdjZNhakA_TnMTIKKt-IQuD-ha5dHs0PusaPLpcGeNH7C3OX9JGbC6YdU03MejgswkvE1rNcYoV79-_gf7_ZhlB9YEH2PA_vG_QOS0og-2y2lF5byiuezdU68eix52kv4DpDLllQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Shi, Changji</creator><creator>Huang, Chuan-Hsiang</creator><creator>Devreotes, Peter N</creator><creator>Iglesias, Pablo A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130701</creationdate><title>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</title><author>Shi, Changji ; Huang, Chuan-Hsiang ; Devreotes, Peter N ; Iglesias, Pablo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Behavior</topic><topic>Biology</topic><topic>Cell migration</topic><topic>Cell Polarity</topic><topic>Chemotaxis</topic><topic>Computational biology</topic><topic>Cytoskeleton</topic><topic>Experiments</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Motility</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Changji</creatorcontrib><creatorcontrib>Huang, Chuan-Hsiang</creatorcontrib><creatorcontrib>Devreotes, Peter N</creatorcontrib><creatorcontrib>Iglesias, Pablo A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Changji</au><au>Huang, Chuan-Hsiang</au><au>Devreotes, Peter N</au><au>Iglesias, Pablo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>9</volume><issue>7</issue><spage>e1003122</spage><epage>e1003122</epage><pages>e1003122-e1003122</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23861660</pmid><doi>10.1371/journal.pcbi.1003122</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-07, Vol.9 (7), p.e1003122-e1003122 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1430783028 |
source | Publicly Available Content Database; PubMed Central |
subjects | Behavior Biology Cell migration Cell Polarity Chemotaxis Computational biology Cytoskeleton Experiments Mathematical models Migration Motility Simulation |
title | Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20motility,%20directional%20sensing,%20and%20polarity%20modules%20recreates%20the%20behaviors%20of%20chemotaxing%20cells&rft.jtitle=PLoS%20computational%20biology&rft.au=Shi,%20Changji&rft.date=2013-07-01&rft.volume=9&rft.issue=7&rft.spage=e1003122&rft.epage=e1003122&rft.pages=e1003122-e1003122&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003122&rft_dat=%3Cgale_plos_%3EA341456424%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c671t-21bef3e4ff9c1c4ec0c18ea99e13b6b7e1bba9f5b5e124387cc6f10b24d91d573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1401089276&rft_id=info:pmid/23861660&rft_galeid=A341456424&rfr_iscdi=true |