Loading…

Human brain activity patterns beyond the isoelectric line of extreme deep coma

The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irrevers...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-09, Vol.8 (9), p.e75257-e75257
Main Authors: Kroeger, Daniel, Florea, Bogdan, Amzica, Florin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223
cites cdi_FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223
container_end_page e75257
container_issue 9
container_start_page e75257
container_title PloS one
container_volume 8
creator Kroeger, Daniel
Florea, Bogdan
Amzica, Florin
description The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.
doi_str_mv 10.1371/journal.pone.0075257
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1433799624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478219123</galeid><doaj_id>oai_doaj_org_article_3fecc23ce8d54626a25a06e1530ef084</doaj_id><sourcerecordid>A478219123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlok_ZGWBZ1BxYX_LoNaXI6k6FNapIuzr83s9NdprIXkosckue8JznnzbKXGC0x5fjD1o3eym45OAtLhHhJSv4oO8U1JQtGEH18FJ9kz0LYIlTSirGn2QkpUJmi-jT7ejn20uaNl8bmUkVzY-IuH2SM4G3IG9g5q_O4gdwEBx2o6I3KO2Mhd20Of6KHHnINMOTK9fJ59qSVXYAX036W_fz86cfF5eLq-svq4vxqoXhZxYWuNWK8pZTWbcEa2bRFUxBFQCOFMaENxk1baSWhUExrTBqouJJIYl2DJoSeZa8PukPngphaEQQuKOV1zUiRiNWB0E5uxeBNL_1OOGnE7YHzayF9NKoDQVtQilAFlS4LRpgkpUQMcEkRtKjaa32cqo1ND1qBjV52M9H5jTUbsXY3gnLOeFkmgXeTgHe_RwhR9CYo6DppwY237y6rgteMJfTNP-jDv5uotUwfMLZ1qa7ai4rzglcE16mLiVo-QKWloTcq-aY16XyW8H6WkJiYZryWYwhi9f3b_7PXv-bs2yN2A7KLm-C6MRpnwxwsDqDyLgQP7X2TMRJ72991Q-xtLybbp7RXxwO6T7rzOf0LPZT9iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433799624</pqid></control><display><type>article</type><title>Human brain activity patterns beyond the isoelectric line of extreme deep coma</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kroeger, Daniel ; Florea, Bogdan ; Amzica, Florin</creator><contributor>Dickson, Clayton T.</contributor><creatorcontrib>Kroeger, Daniel ; Florea, Bogdan ; Amzica, Florin ; Dickson, Clayton T.</creatorcontrib><description>The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0075257</identifier><identifier>PMID: 24058669</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activity patterns ; Anesthesia ; Anesthesiology ; Animals ; Brain ; Brain damage ; Brain injury ; CA3 Region, Hippocampal - pathology ; CA3 Region, Hippocampal - physiopathology ; Cats ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Coma ; Coma - pathology ; Coma - physiopathology ; Cortex ; Damage assessment ; Dentistry ; Drugs ; EEG ; Electrodes ; Electroencephalography ; Experiments ; Female ; Hippocampus ; Humans ; Intracellular ; Isoflurane ; Male ; Neurons ; Neurophysiology ; Oscillations ; Rhythms ; Rodents ; Sleep</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e75257-e75257</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Kroeger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Kroeger et al 2013 Kroeger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223</citedby><cites>FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1433799624/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1433799624?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24058669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dickson, Clayton T.</contributor><creatorcontrib>Kroeger, Daniel</creatorcontrib><creatorcontrib>Florea, Bogdan</creatorcontrib><creatorcontrib>Amzica, Florin</creatorcontrib><title>Human brain activity patterns beyond the isoelectric line of extreme deep coma</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.</description><subject>Activity patterns</subject><subject>Anesthesia</subject><subject>Anesthesiology</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>CA3 Region, Hippocampal - pathology</subject><subject>CA3 Region, Hippocampal - physiopathology</subject><subject>Cats</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Coma</subject><subject>Coma - pathology</subject><subject>Coma - physiopathology</subject><subject>Cortex</subject><subject>Damage assessment</subject><subject>Dentistry</subject><subject>Drugs</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Experiments</subject><subject>Female</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Intracellular</subject><subject>Isoflurane</subject><subject>Male</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Oscillations</subject><subject>Rhythms</subject><subject>Rodents</subject><subject>Sleep</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlok_ZGWBZ1BxYX_LoNaXI6k6FNapIuzr83s9NdprIXkosckue8JznnzbKXGC0x5fjD1o3eym45OAtLhHhJSv4oO8U1JQtGEH18FJ9kz0LYIlTSirGn2QkpUJmi-jT7ejn20uaNl8bmUkVzY-IuH2SM4G3IG9g5q_O4gdwEBx2o6I3KO2Mhd20Of6KHHnINMOTK9fJ59qSVXYAX036W_fz86cfF5eLq-svq4vxqoXhZxYWuNWK8pZTWbcEa2bRFUxBFQCOFMaENxk1baSWhUExrTBqouJJIYl2DJoSeZa8PukPngphaEQQuKOV1zUiRiNWB0E5uxeBNL_1OOGnE7YHzayF9NKoDQVtQilAFlS4LRpgkpUQMcEkRtKjaa32cqo1ND1qBjV52M9H5jTUbsXY3gnLOeFkmgXeTgHe_RwhR9CYo6DppwY237y6rgteMJfTNP-jDv5uotUwfMLZ1qa7ai4rzglcE16mLiVo-QKWloTcq-aY16XyW8H6WkJiYZryWYwhi9f3b_7PXv-bs2yN2A7KLm-C6MRpnwxwsDqDyLgQP7X2TMRJ72991Q-xtLybbp7RXxwO6T7rzOf0LPZT9iw</recordid><startdate>20130918</startdate><enddate>20130918</enddate><creator>Kroeger, Daniel</creator><creator>Florea, Bogdan</creator><creator>Amzica, Florin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130918</creationdate><title>Human brain activity patterns beyond the isoelectric line of extreme deep coma</title><author>Kroeger, Daniel ; Florea, Bogdan ; Amzica, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activity patterns</topic><topic>Anesthesia</topic><topic>Anesthesiology</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>CA3 Region, Hippocampal - pathology</topic><topic>CA3 Region, Hippocampal - physiopathology</topic><topic>Cats</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Coma</topic><topic>Coma - pathology</topic><topic>Coma - physiopathology</topic><topic>Cortex</topic><topic>Damage assessment</topic><topic>Dentistry</topic><topic>Drugs</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Experiments</topic><topic>Female</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Intracellular</topic><topic>Isoflurane</topic><topic>Male</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Oscillations</topic><topic>Rhythms</topic><topic>Rodents</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroeger, Daniel</creatorcontrib><creatorcontrib>Florea, Bogdan</creatorcontrib><creatorcontrib>Amzica, Florin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroeger, Daniel</au><au>Florea, Bogdan</au><au>Amzica, Florin</au><au>Dickson, Clayton T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human brain activity patterns beyond the isoelectric line of extreme deep coma</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-18</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e75257</spage><epage>e75257</epage><pages>e75257-e75257</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24058669</pmid><doi>10.1371/journal.pone.0075257</doi><tpages>e75257</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-09, Vol.8 (9), p.e75257-e75257
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1433799624
source Open Access: PubMed Central; Publicly Available Content Database
subjects Activity patterns
Anesthesia
Anesthesiology
Animals
Brain
Brain damage
Brain injury
CA3 Region, Hippocampal - pathology
CA3 Region, Hippocampal - physiopathology
Cats
Cerebral Cortex - pathology
Cerebral Cortex - physiopathology
Coma
Coma - pathology
Coma - physiopathology
Cortex
Damage assessment
Dentistry
Drugs
EEG
Electrodes
Electroencephalography
Experiments
Female
Hippocampus
Humans
Intracellular
Isoflurane
Male
Neurons
Neurophysiology
Oscillations
Rhythms
Rodents
Sleep
title Human brain activity patterns beyond the isoelectric line of extreme deep coma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20brain%20activity%20patterns%20beyond%20the%20isoelectric%20line%20of%20extreme%20deep%20coma&rft.jtitle=PloS%20one&rft.au=Kroeger,%20Daniel&rft.date=2013-09-18&rft.volume=8&rft.issue=9&rft.spage=e75257&rft.epage=e75257&rft.pages=e75257-e75257&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0075257&rft_dat=%3Cgale_plos_%3EA478219123%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-d9d067f3339f46babf4b42c2ed0c1123b11bf8dcae4c6dd12be87ca0a1d9ed223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1433799624&rft_id=info:pmid/24058669&rft_galeid=A478219123&rfr_iscdi=true