Loading…
Single-cell analysis of thymocyte differentiation: identification of transcription factor interactions and a major stochastic component in αβ-lineage commitment
T cell commitment and αβ/γδ lineage specification in the thymus involves interactions between many different genes. Characterization of these interactions thus requires a multiparameter analysis of individual thymocytes. We developed two efficient single-cell methods: (i) the quantitative evaluation...
Saved in:
Published in: | PloS one 2013-10, Vol.8 (10), p.e73098-e73098 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3 |
container_end_page | e73098 |
container_issue | 10 |
container_start_page | e73098 |
container_title | PloS one |
container_volume | 8 |
creator | Boudil, Amine Skhiri, Lamia Candéias, Serge Pasqualetto, Valérie Legrand, Agnès Bedora-Faure, Marie Gautreau-Rolland, Laetitia Rocha, Benedita Ezine, Sophie |
description | T cell commitment and αβ/γδ lineage specification in the thymus involves interactions between many different genes. Characterization of these interactions thus requires a multiparameter analysis of individual thymocytes. We developed two efficient single-cell methods: (i) the quantitative evaluation of the co-expression levels of nine different genes, with a plating efficiency of 99-100% and a detection limit of 2 mRNA molecules/cell; and (ii) single-cell differentiation cultures, in the presence of OP9 cells transfected with the thymus Notch1 ligand DeltaL4. We show that during T cell commitment, Gata3 has a fundamental, dose-dependent role in maintaining Notch1 expression, with thymocytes becoming T-cell-committed when they co-express Notch1, Gata3 and Bc11b. Of the transcription factor expression patterns studied here, only that of Bcl11b was suggestive of a role in Pu1 down-regulation. Individual thymocytes became αβ/γδ lineage-committed at very different stages (from the TN2a stage onwards). However, 20% of TN3 cells are not αβ/γδ-lineage committed and TN4 cells comprise two main subpopulations with different degrees of maturity. The existence of a correlation between differentiation potential and expression of the pre-TCR showed that 83% of αβ-committed cells do not express the pre-TCR and revealed a major stochastic component in αβ-lineage specification. |
doi_str_mv | 10.1371/journal.pone.0073098 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1438700437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f1f4377245b45689142c3b780be266f</doaj_id><sourcerecordid>1443416811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3</originalsourceid><addsrcrecordid>eNptUktuFDEQbSEQCYEbIGiJDZse_Gl_mgUSiiCJFIkFsLaq3faMR932YHuQ5jrcAA6SM-GemUQJYuX6vPeqylVV9RKjBaYCv1uHbfQwLjbBmwVCgqJOPqpOcUdJwwmij-_ZJ9WzlNYIMSo5f1qdkLaAKWGn1a-vzi9H02gzjjUUvV1yqQ62zqvdFPQum3pw1ppofHaQXfDvazfMjnV67-_BEXzS0W32AQs6h1g7n00sZgmlIj3UUE-wLomUg15Byk7XOkxz_z4XdH3z--ZPMzpvYGnmzOTyVFLPqycWxmReHN-z6vvnT9_OL5vrLxdX5x-vG80Izw2RjGktCBv6DizvOwuGcE1sjwjjvRUGEAXUUqRZZzthOsmQJLLj0khAlp5Vrw-6mzEkdfzepHBLpUCFJwri6oAYAqzVJroJ4k4FcGofCHGpIJaxRqNai22hCNKyvmVcdrglmvZCor50xedqH47Vtv1kBl0GjTA-EH2Y8W6lluGnokKKjsoi8PYoEMOPrUlZTS7NawRvwnbuu6Ut5hLjAn3zD_T_07UHlI4hpWjsXTMYqfnkbllqXpk6nlyhvbo_yB3p9sboX7ve2o8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1438700437</pqid></control><display><type>article</type><title>Single-cell analysis of thymocyte differentiation: identification of transcription factor interactions and a major stochastic component in αβ-lineage commitment</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Boudil, Amine ; Skhiri, Lamia ; Candéias, Serge ; Pasqualetto, Valérie ; Legrand, Agnès ; Bedora-Faure, Marie ; Gautreau-Rolland, Laetitia ; Rocha, Benedita ; Ezine, Sophie</creator><contributor>Liu, Guangwei</contributor><creatorcontrib>Boudil, Amine ; Skhiri, Lamia ; Candéias, Serge ; Pasqualetto, Valérie ; Legrand, Agnès ; Bedora-Faure, Marie ; Gautreau-Rolland, Laetitia ; Rocha, Benedita ; Ezine, Sophie ; Liu, Guangwei</creatorcontrib><description>T cell commitment and αβ/γδ lineage specification in the thymus involves interactions between many different genes. Characterization of these interactions thus requires a multiparameter analysis of individual thymocytes. We developed two efficient single-cell methods: (i) the quantitative evaluation of the co-expression levels of nine different genes, with a plating efficiency of 99-100% and a detection limit of 2 mRNA molecules/cell; and (ii) single-cell differentiation cultures, in the presence of OP9 cells transfected with the thymus Notch1 ligand DeltaL4. We show that during T cell commitment, Gata3 has a fundamental, dose-dependent role in maintaining Notch1 expression, with thymocytes becoming T-cell-committed when they co-express Notch1, Gata3 and Bc11b. Of the transcription factor expression patterns studied here, only that of Bcl11b was suggestive of a role in Pu1 down-regulation. Individual thymocytes became αβ/γδ lineage-committed at very different stages (from the TN2a stage onwards). However, 20% of TN3 cells are not αβ/γδ-lineage committed and TN4 cells comprise two main subpopulations with different degrees of maturity. The existence of a correlation between differentiation potential and expression of the pre-TCR showed that 83% of αβ-committed cells do not express the pre-TCR and revealed a major stochastic component in αβ-lineage specification.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073098</identifier><identifier>PMID: 24098325</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bone marrow ; Cell Differentiation ; Cell Line ; Cell Lineage ; Differentiation (biology) ; GATA-3 protein ; Gene expression ; Gene Expression Profiling ; Genes ; Lymphocytes ; Lymphocytes T ; Mice ; Molecular chains ; Notch1 protein ; Population ; Quantitative analysis ; Single-Cell Analysis ; Specifications ; Stochastic models ; Stochastic Processes ; Stochasticity ; Subpopulations ; T cell receptors ; T-cell receptor ; Thymocytes ; Thymocytes - cytology ; Thymocytes - metabolism ; Thymus ; Transcription factors ; Transcription Factors - metabolism</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e73098-e73098</ispartof><rights>2013 Boudil et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Boudil et al 2013 Boudil et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3</citedby><cites>FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1438700437/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1438700437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24098325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Liu, Guangwei</contributor><creatorcontrib>Boudil, Amine</creatorcontrib><creatorcontrib>Skhiri, Lamia</creatorcontrib><creatorcontrib>Candéias, Serge</creatorcontrib><creatorcontrib>Pasqualetto, Valérie</creatorcontrib><creatorcontrib>Legrand, Agnès</creatorcontrib><creatorcontrib>Bedora-Faure, Marie</creatorcontrib><creatorcontrib>Gautreau-Rolland, Laetitia</creatorcontrib><creatorcontrib>Rocha, Benedita</creatorcontrib><creatorcontrib>Ezine, Sophie</creatorcontrib><title>Single-cell analysis of thymocyte differentiation: identification of transcription factor interactions and a major stochastic component in αβ-lineage commitment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>T cell commitment and αβ/γδ lineage specification in the thymus involves interactions between many different genes. Characterization of these interactions thus requires a multiparameter analysis of individual thymocytes. We developed two efficient single-cell methods: (i) the quantitative evaluation of the co-expression levels of nine different genes, with a plating efficiency of 99-100% and a detection limit of 2 mRNA molecules/cell; and (ii) single-cell differentiation cultures, in the presence of OP9 cells transfected with the thymus Notch1 ligand DeltaL4. We show that during T cell commitment, Gata3 has a fundamental, dose-dependent role in maintaining Notch1 expression, with thymocytes becoming T-cell-committed when they co-express Notch1, Gata3 and Bc11b. Of the transcription factor expression patterns studied here, only that of Bcl11b was suggestive of a role in Pu1 down-regulation. Individual thymocytes became αβ/γδ lineage-committed at very different stages (from the TN2a stage onwards). However, 20% of TN3 cells are not αβ/γδ-lineage committed and TN4 cells comprise two main subpopulations with different degrees of maturity. The existence of a correlation between differentiation potential and expression of the pre-TCR showed that 83% of αβ-committed cells do not express the pre-TCR and revealed a major stochastic component in αβ-lineage specification.</description><subject>Animals</subject><subject>Bone marrow</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Lineage</subject><subject>Differentiation (biology)</subject><subject>GATA-3 protein</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Molecular chains</subject><subject>Notch1 protein</subject><subject>Population</subject><subject>Quantitative analysis</subject><subject>Single-Cell Analysis</subject><subject>Specifications</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Subpopulations</subject><subject>T cell receptors</subject><subject>T-cell receptor</subject><subject>Thymocytes</subject><subject>Thymocytes - cytology</subject><subject>Thymocytes - metabolism</subject><subject>Thymus</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUktuFDEQbSEQCYEbIGiJDZse_Gl_mgUSiiCJFIkFsLaq3faMR932YHuQ5jrcAA6SM-GemUQJYuX6vPeqylVV9RKjBaYCv1uHbfQwLjbBmwVCgqJOPqpOcUdJwwmij-_ZJ9WzlNYIMSo5f1qdkLaAKWGn1a-vzi9H02gzjjUUvV1yqQ62zqvdFPQum3pw1ppofHaQXfDvazfMjnV67-_BEXzS0W32AQs6h1g7n00sZgmlIj3UUE-wLomUg15Byk7XOkxz_z4XdH3z--ZPMzpvYGnmzOTyVFLPqycWxmReHN-z6vvnT9_OL5vrLxdX5x-vG80Izw2RjGktCBv6DizvOwuGcE1sjwjjvRUGEAXUUqRZZzthOsmQJLLj0khAlp5Vrw-6mzEkdfzepHBLpUCFJwri6oAYAqzVJroJ4k4FcGofCHGpIJaxRqNai22hCNKyvmVcdrglmvZCor50xedqH47Vtv1kBl0GjTA-EH2Y8W6lluGnokKKjsoi8PYoEMOPrUlZTS7NawRvwnbuu6Ut5hLjAn3zD_T_07UHlI4hpWjsXTMYqfnkbllqXpk6nlyhvbo_yB3p9sboX7ve2o8</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Boudil, Amine</creator><creator>Skhiri, Lamia</creator><creator>Candéias, Serge</creator><creator>Pasqualetto, Valérie</creator><creator>Legrand, Agnès</creator><creator>Bedora-Faure, Marie</creator><creator>Gautreau-Rolland, Laetitia</creator><creator>Rocha, Benedita</creator><creator>Ezine, Sophie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131001</creationdate><title>Single-cell analysis of thymocyte differentiation: identification of transcription factor interactions and a major stochastic component in αβ-lineage commitment</title><author>Boudil, Amine ; Skhiri, Lamia ; Candéias, Serge ; Pasqualetto, Valérie ; Legrand, Agnès ; Bedora-Faure, Marie ; Gautreau-Rolland, Laetitia ; Rocha, Benedita ; Ezine, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bone marrow</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Lineage</topic><topic>Differentiation (biology)</topic><topic>GATA-3 protein</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Molecular chains</topic><topic>Notch1 protein</topic><topic>Population</topic><topic>Quantitative analysis</topic><topic>Single-Cell Analysis</topic><topic>Specifications</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Subpopulations</topic><topic>T cell receptors</topic><topic>T-cell receptor</topic><topic>Thymocytes</topic><topic>Thymocytes - cytology</topic><topic>Thymocytes - metabolism</topic><topic>Thymus</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudil, Amine</creatorcontrib><creatorcontrib>Skhiri, Lamia</creatorcontrib><creatorcontrib>Candéias, Serge</creatorcontrib><creatorcontrib>Pasqualetto, Valérie</creatorcontrib><creatorcontrib>Legrand, Agnès</creatorcontrib><creatorcontrib>Bedora-Faure, Marie</creatorcontrib><creatorcontrib>Gautreau-Rolland, Laetitia</creatorcontrib><creatorcontrib>Rocha, Benedita</creatorcontrib><creatorcontrib>Ezine, Sophie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudil, Amine</au><au>Skhiri, Lamia</au><au>Candéias, Serge</au><au>Pasqualetto, Valérie</au><au>Legrand, Agnès</au><au>Bedora-Faure, Marie</au><au>Gautreau-Rolland, Laetitia</au><au>Rocha, Benedita</au><au>Ezine, Sophie</au><au>Liu, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell analysis of thymocyte differentiation: identification of transcription factor interactions and a major stochastic component in αβ-lineage commitment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e73098</spage><epage>e73098</epage><pages>e73098-e73098</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>T cell commitment and αβ/γδ lineage specification in the thymus involves interactions between many different genes. Characterization of these interactions thus requires a multiparameter analysis of individual thymocytes. We developed two efficient single-cell methods: (i) the quantitative evaluation of the co-expression levels of nine different genes, with a plating efficiency of 99-100% and a detection limit of 2 mRNA molecules/cell; and (ii) single-cell differentiation cultures, in the presence of OP9 cells transfected with the thymus Notch1 ligand DeltaL4. We show that during T cell commitment, Gata3 has a fundamental, dose-dependent role in maintaining Notch1 expression, with thymocytes becoming T-cell-committed when they co-express Notch1, Gata3 and Bc11b. Of the transcription factor expression patterns studied here, only that of Bcl11b was suggestive of a role in Pu1 down-regulation. Individual thymocytes became αβ/γδ lineage-committed at very different stages (from the TN2a stage onwards). However, 20% of TN3 cells are not αβ/γδ-lineage committed and TN4 cells comprise two main subpopulations with different degrees of maturity. The existence of a correlation between differentiation potential and expression of the pre-TCR showed that 83% of αβ-committed cells do not express the pre-TCR and revealed a major stochastic component in αβ-lineage specification.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24098325</pmid><doi>10.1371/journal.pone.0073098</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-10, Vol.8 (10), p.e73098-e73098 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1438700437 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Animals Bone marrow Cell Differentiation Cell Line Cell Lineage Differentiation (biology) GATA-3 protein Gene expression Gene Expression Profiling Genes Lymphocytes Lymphocytes T Mice Molecular chains Notch1 protein Population Quantitative analysis Single-Cell Analysis Specifications Stochastic models Stochastic Processes Stochasticity Subpopulations T cell receptors T-cell receptor Thymocytes Thymocytes - cytology Thymocytes - metabolism Thymus Transcription factors Transcription Factors - metabolism |
title | Single-cell analysis of thymocyte differentiation: identification of transcription factor interactions and a major stochastic component in αβ-lineage commitment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20analysis%20of%20thymocyte%20differentiation:%20identification%20of%20transcription%20factor%20interactions%20and%20a%20major%20stochastic%20component%20in%20%CE%B1%CE%B2-lineage%20commitment&rft.jtitle=PloS%20one&rft.au=Boudil,%20Amine&rft.date=2013-10-01&rft.volume=8&rft.issue=10&rft.spage=e73098&rft.epage=e73098&rft.pages=e73098-e73098&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073098&rft_dat=%3Cproquest_plos_%3E1443416811%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-2855cc725db9af6b9fae26c2fb0256bf7ea03a0430c59f97e9850828968e8a0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1438700437&rft_id=info:pmid/24098325&rfr_iscdi=true |