Loading…

Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis

Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtaine...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-10, Vol.8 (10), p.e73989
Main Authors: Zhai, Chao-Zeng, Zhao, Lei, Yin, Li-Juan, Chen, Ming, Wang, Qing-Yu, Li, Lian-Cheng, Xu, Zhao-Shi, Ma, You-Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtained by de novo transcriptome sequencing of salt-treated wheat (Triticum aestivum) seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H2O2 and t-butyl hydroperoxide (t-BHP) using glutathione (GSH) or thioredoxin (Trx) as an electron donor in vitro, showing their peroxidase activity toward H2O2 and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR) analysis showed that two GPXs were differentially responsive to salt, drought, H2O2, or ABA. Isolation of the W69 and W106 promoters revealed some cis-acting elements responding to abiotic stresses. Overexpression of W69 and W106 conferred strong tolerance to salt, H2O2, and ABA treatment in Arabidopsis. Moreover, the expression levels of key regulator genes (SOS1, RbohD and ABI1/ABI2) involved in salt, H2O2 and ABA signaling were altered in the transgenic plants. These findings suggest that W69 and W106 not only act as scavengers of H2O2 in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0073989