Loading…

Combinatorial engineering of dextransucrase specificity

We used combinatorial engineering to investigate the relationships between structure and linkage specificity of the dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, and to generate variants with altered specificity. Sequence and structural analysis of glycoside-hydrolase family 70 en...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-10, Vol.8 (10), p.e77837
Main Authors: Irague, Romain, Tarquis, Laurence, André, Isabelle, Moulis, Claire, Morel, Sandrine, Monsan, Pierre, Potocki-Véronèse, Gabrielle, Remaud-Siméon, Magali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used combinatorial engineering to investigate the relationships between structure and linkage specificity of the dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, and to generate variants with altered specificity. Sequence and structural analysis of glycoside-hydrolase family 70 enzymes led to eight amino acids (D306, F353, N404, W440, D460, H463, T464 and S512) being targeted, randomized by saturation mutagenesis and simultaneously recombined. Screening of two libraries totaling 3.6.10(4) clones allowed the isolation of a toolbox comprising 81 variants which synthesize high molecular weight α-glucans with different proportions of α(1→3) linkages ranging from 3 to 20 %. Mutant sequence analysis, biochemical characterization and molecular modelling studies revealed the previously unknown role of peptide (460)DYVHT(464) in DSR-S linkage specificity. This peptide sequence together with residue S512 contribute to defining +2 subsite topology, which may be critical for the enzyme regiospecificity.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0077837