Loading…
A comprehensive analysis of the importance of translation initiation factors for Haloferax volcanii applying deletion and conditional depletion mutants
Translation is an important step in gene expression. The initiation of translation is phylogenetically diverse, since currently five different initiation mechanisms are known. For bacteria the three initiation factors IF1 - IF3 are described in contrast to archaea and eukaryotes, which contain a con...
Saved in:
Published in: | PloS one 2013-11, Vol.8 (11), p.e77188 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Translation is an important step in gene expression. The initiation of translation is phylogenetically diverse, since currently five different initiation mechanisms are known. For bacteria the three initiation factors IF1 - IF3 are described in contrast to archaea and eukaryotes, which contain a considerably higher number of initiation factor genes. As eukaryotes and archaea use a non-overlapping set of initiation mechanisms, orthologous proteins of both domains do not necessarily fulfill the same function. The genome of Haloferax volcanii contains 14 annotated genes that encode (subunits of) initiation factors. To gain a comprehensive overview of the importance of these genes, it was attempted to construct single gene deletion mutants of all genes. In 9 cases single deletion mutants were successfully constructed, showing that the respective genes are not essential. In contrast, the genes encoding initiation factors aIF1, aIF2γ, aIF5A, aIF5B, and aIF6 were found to be essential. Factors aIF1A and aIF2β are encoded by two orthologous genes in H. volcanii. Attempts to generate double mutants failed in both cases, indicating that also these factors are essential. A translatome analysis of one of the single aIF2β deletion mutants revealed that the translational efficiency of the second ortholog was enhanced tenfold and thus the two proteins can replace one another. The phenotypes of the single deletion mutants also revealed that the two aIF1As and aIF2βs have redundant but not identical functions. Remarkably, the gene encoding aIF2α, a subunit of aIF2 involved in initiator tRNA binding, could be deleted. However, the mutant had a severe growth defect under all tested conditions. Conditional depletion mutants were generated for the five essential genes. The phenotypes of deletion mutants and conditional depletion mutants were compared to that of the wild-type under various conditions, and growth characteristics are discussed. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0077188 |