Loading…
Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model
The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing...
Saved in:
Published in: | PloS one 2013-11, Vol.8 (11), p.e80723-e80723 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3 |
container_end_page | e80723 |
container_issue | 11 |
container_start_page | e80723 |
container_title | PloS one |
container_volume | 8 |
creator | Everitt, Aaron R Clare, Simon McDonald, Jacqueline U Kane, Leanne Harcourt, Katherine Ahras, Malika Lall, Amar Hale, Christine Rodgers, Angela Young, Douglas B Haque, Ashraful Billker, Oliver Tregoning, John S Dougan, Gordon Kellam, Paul |
description | The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins. |
doi_str_mv | 10.1371/journal.pone.0080723 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1460504766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478172054</galeid><doaj_id>oai_doaj_org_article_9e3566d8772d4f319075c3ea2baea247</doaj_id><sourcerecordid>A478172054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</originalsourceid><addsrcrecordid>eNqNk1lr3DAUhU1padK0_6C0hkJpH2aqzZL9UhiSLgOBQJc8Vsj2tUcTW5pYUpd_XznjhHHJQzHIRv7O0dWRbpI8x2iJqcDvtjYMRnXLnTWwRChHgtAHyTEuKFlwgujDg--j5IlzW4QymnP-ODkijIicYnKc_DiDRhtt2tRvIB2UaSG1TbpTfmNbMC51wVWw87rsIPU2XTfa9zQdwPlBV15bkwY3ylV6ZWx1ZYNPexscxLGG7mnyqFGdg2fT-yT5_vHDt9PPi_OLT-vT1fmiEgX3C4EI4IZgqlRNM6GIIE1ZCgZ5g3FR0oIQhnBVEEVYWTOAWhSi5jyvm4yzCJwkL_e-u846OUXjJGYcZYgJziOx3hO1VVu5G3Svhj_SKi1vJuzQSjV4XXUgC6AZ53UuBKlZQ3GBRFZRUKRUcWAiei32Xu4X7EI5czvTl6sbt9AHiXmWcxz591N1oeyhrsD4QXUz2fyP0RvZ2p-S5pSLbCz-zWQw2OsQs5e9jsfSdcpADHvcJ4llEjau9eof9P40JqpVccPaNDauW42mcsVEjgVBGYvU8h4qPjX0uor3rtFxfiZ4OxNExsNv36rgnFx__fL_7MXlnH19wG5AdX7jbBfG--fmINuD1WCdG6C5CxkjObbNbRpybBs5tU2UvTg8oDvRbZ_Qv156Egs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460504766</pqid></control><display><type>article</type><title>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Everitt, Aaron R ; Clare, Simon ; McDonald, Jacqueline U ; Kane, Leanne ; Harcourt, Katherine ; Ahras, Malika ; Lall, Amar ; Hale, Christine ; Rodgers, Angela ; Young, Douglas B ; Haque, Ashraful ; Billker, Oliver ; Tregoning, John S ; Dougan, Gordon ; Kellam, Paul</creator><contributor>Ikeda, Yasuhiro</contributor><creatorcontrib>Everitt, Aaron R ; Clare, Simon ; McDonald, Jacqueline U ; Kane, Leanne ; Harcourt, Katherine ; Ahras, Malika ; Lall, Amar ; Hale, Christine ; Rodgers, Angela ; Young, Douglas B ; Haque, Ashraful ; Billker, Oliver ; Tregoning, John S ; Dougan, Gordon ; Kellam, Paul ; Ikeda, Yasuhiro</creatorcontrib><description>The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0080723</identifier><identifier>PMID: 24278312</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject><![CDATA[Animal ; Animals ; Antiviral activity ; Bacteria ; Bacteria - metabolism ; Biological response modifiers ; Citrobacter ; Citrobacter rodentium - growth & development ; Citrobacter rodentium - physiology ; Citrobacter rodentium/growth & development/physiology ; College campuses ; Disease control ; Ethics ; Gene expression ; Genetic aspects ; Genomes ; Health aspects ; Homeostasis ; Immunology ; In vivo methods and tests ; Inbred C57BL ; Infection ; Infections ; Infectious diseases ; Influenza ; Influenza viruses ; Interferon ; Kinetics ; Knockout ; Laboratories ; Malaria - parasitology ; Medical research ; Membrane Proteins - deficiency ; Membrane Proteins - metabolism ; Membrane Proteins/deficiency/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Animal ; Mycobacterium tuberculosis - growth & development ; Mycobacterium tuberculosis - physiology ; Mycobacterium tuberculosis/growth & development/physiology ; Pathogenesis ; Pathogenic microorganisms ; Pathogens ; Phenotype ; Plasmodium berghei ; Plasmodium berghei - growth & development ; Plasmodium berghei - physiology ; Plasmodium berghei/growth & development/physiology ; Proteins ; Protozoa ; Respiratory syncytial virus ; Respiratory Syncytial Viruses - growth & development ; Respiratory Syncytial Viruses - physiology ; Respiratory Syncytial Viruses/growth & development/physiology ; Salmonella ; Salmonella typhimurium - physiology ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Tuberculosis ; Viral infections ; Virology ; Viruses]]></subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e80723-e80723</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Everitt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Everitt et al 2013 Everitt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</citedby><cites>FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1460504766/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1460504766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24278312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-165861$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Ikeda, Yasuhiro</contributor><creatorcontrib>Everitt, Aaron R</creatorcontrib><creatorcontrib>Clare, Simon</creatorcontrib><creatorcontrib>McDonald, Jacqueline U</creatorcontrib><creatorcontrib>Kane, Leanne</creatorcontrib><creatorcontrib>Harcourt, Katherine</creatorcontrib><creatorcontrib>Ahras, Malika</creatorcontrib><creatorcontrib>Lall, Amar</creatorcontrib><creatorcontrib>Hale, Christine</creatorcontrib><creatorcontrib>Rodgers, Angela</creatorcontrib><creatorcontrib>Young, Douglas B</creatorcontrib><creatorcontrib>Haque, Ashraful</creatorcontrib><creatorcontrib>Billker, Oliver</creatorcontrib><creatorcontrib>Tregoning, John S</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kellam, Paul</creatorcontrib><title>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.</description><subject>Animal</subject><subject>Animals</subject><subject>Antiviral activity</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biological response modifiers</subject><subject>Citrobacter</subject><subject>Citrobacter rodentium - growth & development</subject><subject>Citrobacter rodentium - physiology</subject><subject>Citrobacter rodentium/growth & development/physiology</subject><subject>College campuses</subject><subject>Disease control</subject><subject>Ethics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>In vivo methods and tests</subject><subject>Inbred C57BL</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza viruses</subject><subject>Interferon</subject><subject>Kinetics</subject><subject>Knockout</subject><subject>Laboratories</subject><subject>Malaria - parasitology</subject><subject>Medical research</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Proteins/deficiency/metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Animal</subject><subject>Mycobacterium tuberculosis - growth & development</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Mycobacterium tuberculosis/growth & development/physiology</subject><subject>Pathogenesis</subject><subject>Pathogenic microorganisms</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Plasmodium berghei</subject><subject>Plasmodium berghei - growth & development</subject><subject>Plasmodium berghei - physiology</subject><subject>Plasmodium berghei/growth & development/physiology</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Respiratory syncytial virus</subject><subject>Respiratory Syncytial Viruses - growth & development</subject><subject>Respiratory Syncytial Viruses - physiology</subject><subject>Respiratory Syncytial Viruses/growth & development/physiology</subject><subject>Salmonella</subject><subject>Salmonella typhimurium - physiology</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Tuberculosis</subject><subject>Viral infections</subject><subject>Virology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1lr3DAUhU1padK0_6C0hkJpH2aqzZL9UhiSLgOBQJc8Vsj2tUcTW5pYUpd_XznjhHHJQzHIRv7O0dWRbpI8x2iJqcDvtjYMRnXLnTWwRChHgtAHyTEuKFlwgujDg--j5IlzW4QymnP-ODkijIicYnKc_DiDRhtt2tRvIB2UaSG1TbpTfmNbMC51wVWw87rsIPU2XTfa9zQdwPlBV15bkwY3ylV6ZWx1ZYNPexscxLGG7mnyqFGdg2fT-yT5_vHDt9PPi_OLT-vT1fmiEgX3C4EI4IZgqlRNM6GIIE1ZCgZ5g3FR0oIQhnBVEEVYWTOAWhSi5jyvm4yzCJwkL_e-u846OUXjJGYcZYgJziOx3hO1VVu5G3Svhj_SKi1vJuzQSjV4XXUgC6AZ53UuBKlZQ3GBRFZRUKRUcWAiei32Xu4X7EI5czvTl6sbt9AHiXmWcxz591N1oeyhrsD4QXUz2fyP0RvZ2p-S5pSLbCz-zWQw2OsQs5e9jsfSdcpADHvcJ4llEjau9eof9P40JqpVccPaNDauW42mcsVEjgVBGYvU8h4qPjX0uor3rtFxfiZ4OxNExsNv36rgnFx__fL_7MXlnH19wG5AdX7jbBfG--fmINuD1WCdG6C5CxkjObbNbRpybBs5tU2UvTg8oDvRbZ_Qv156Egs</recordid><startdate>20131121</startdate><enddate>20131121</enddate><creator>Everitt, Aaron R</creator><creator>Clare, Simon</creator><creator>McDonald, Jacqueline U</creator><creator>Kane, Leanne</creator><creator>Harcourt, Katherine</creator><creator>Ahras, Malika</creator><creator>Lall, Amar</creator><creator>Hale, Christine</creator><creator>Rodgers, Angela</creator><creator>Young, Douglas B</creator><creator>Haque, Ashraful</creator><creator>Billker, Oliver</creator><creator>Tregoning, John S</creator><creator>Dougan, Gordon</creator><creator>Kellam, Paul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>DOA</scope></search><sort><creationdate>20131121</creationdate><title>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</title><author>Everitt, Aaron R ; Clare, Simon ; McDonald, Jacqueline U ; Kane, Leanne ; Harcourt, Katherine ; Ahras, Malika ; Lall, Amar ; Hale, Christine ; Rodgers, Angela ; Young, Douglas B ; Haque, Ashraful ; Billker, Oliver ; Tregoning, John S ; Dougan, Gordon ; Kellam, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal</topic><topic>Animals</topic><topic>Antiviral activity</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biological response modifiers</topic><topic>Citrobacter</topic><topic>Citrobacter rodentium - growth & development</topic><topic>Citrobacter rodentium - physiology</topic><topic>Citrobacter rodentium/growth & development/physiology</topic><topic>College campuses</topic><topic>Disease control</topic><topic>Ethics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>In vivo methods and tests</topic><topic>Inbred C57BL</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza viruses</topic><topic>Interferon</topic><topic>Kinetics</topic><topic>Knockout</topic><topic>Laboratories</topic><topic>Malaria - parasitology</topic><topic>Medical research</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Proteins/deficiency/metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Animal</topic><topic>Mycobacterium tuberculosis - growth & development</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Mycobacterium tuberculosis/growth & development/physiology</topic><topic>Pathogenesis</topic><topic>Pathogenic microorganisms</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Plasmodium berghei</topic><topic>Plasmodium berghei - growth & development</topic><topic>Plasmodium berghei - physiology</topic><topic>Plasmodium berghei/growth & development/physiology</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Respiratory syncytial virus</topic><topic>Respiratory Syncytial Viruses - growth & development</topic><topic>Respiratory Syncytial Viruses - physiology</topic><topic>Respiratory Syncytial Viruses/growth & development/physiology</topic><topic>Salmonella</topic><topic>Salmonella typhimurium - physiology</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Tuberculosis</topic><topic>Viral infections</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Everitt, Aaron R</creatorcontrib><creatorcontrib>Clare, Simon</creatorcontrib><creatorcontrib>McDonald, Jacqueline U</creatorcontrib><creatorcontrib>Kane, Leanne</creatorcontrib><creatorcontrib>Harcourt, Katherine</creatorcontrib><creatorcontrib>Ahras, Malika</creatorcontrib><creatorcontrib>Lall, Amar</creatorcontrib><creatorcontrib>Hale, Christine</creatorcontrib><creatorcontrib>Rodgers, Angela</creatorcontrib><creatorcontrib>Young, Douglas B</creatorcontrib><creatorcontrib>Haque, Ashraful</creatorcontrib><creatorcontrib>Billker, Oliver</creatorcontrib><creatorcontrib>Tregoning, John S</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kellam, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Everitt, Aaron R</au><au>Clare, Simon</au><au>McDonald, Jacqueline U</au><au>Kane, Leanne</au><au>Harcourt, Katherine</au><au>Ahras, Malika</au><au>Lall, Amar</au><au>Hale, Christine</au><au>Rodgers, Angela</au><au>Young, Douglas B</au><au>Haque, Ashraful</au><au>Billker, Oliver</au><au>Tregoning, John S</au><au>Dougan, Gordon</au><au>Kellam, Paul</au><au>Ikeda, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-21</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e80723</spage><epage>e80723</epage><pages>e80723-e80723</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24278312</pmid><doi>10.1371/journal.pone.0080723</doi><tpages>e80723</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11), p.e80723-e80723 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1460504766 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Coronavirus Research Database |
subjects | Animal Animals Antiviral activity Bacteria Bacteria - metabolism Biological response modifiers Citrobacter Citrobacter rodentium - growth & development Citrobacter rodentium - physiology Citrobacter rodentium/growth & development/physiology College campuses Disease control Ethics Gene expression Genetic aspects Genomes Health aspects Homeostasis Immunology In vivo methods and tests Inbred C57BL Infection Infections Infectious diseases Influenza Influenza viruses Interferon Kinetics Knockout Laboratories Malaria - parasitology Medical research Membrane Proteins - deficiency Membrane Proteins - metabolism Membrane Proteins/deficiency/metabolism Mice Mice, Inbred C57BL Mice, Knockout Models, Animal Mycobacterium tuberculosis - growth & development Mycobacterium tuberculosis - physiology Mycobacterium tuberculosis/growth & development/physiology Pathogenesis Pathogenic microorganisms Pathogens Phenotype Plasmodium berghei Plasmodium berghei - growth & development Plasmodium berghei - physiology Plasmodium berghei/growth & development/physiology Proteins Protozoa Respiratory syncytial virus Respiratory Syncytial Viruses - growth & development Respiratory Syncytial Viruses - physiology Respiratory Syncytial Viruses/growth & development/physiology Salmonella Salmonella typhimurium - physiology Single nucleotide polymorphisms Single-nucleotide polymorphism Tuberculosis Viral infections Virology Viruses |
title | Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20range%20of%20pathogens%20susceptible%20to%20Ifitm3%20restriction%20using%20a%20knockout%20mouse%20model&rft.jtitle=PloS%20one&rft.au=Everitt,%20Aaron%20R&rft.date=2013-11-21&rft.volume=8&rft.issue=11&rft.spage=e80723&rft.epage=e80723&rft.pages=e80723-e80723&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0080723&rft_dat=%3Cgale_plos_%3EA478172054%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1460504766&rft_id=info:pmid/24278312&rft_galeid=A478172054&rfr_iscdi=true |