Loading…

Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model

The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-11, Vol.8 (11), p.e80723-e80723
Main Authors: Everitt, Aaron R, Clare, Simon, McDonald, Jacqueline U, Kane, Leanne, Harcourt, Katherine, Ahras, Malika, Lall, Amar, Hale, Christine, Rodgers, Angela, Young, Douglas B, Haque, Ashraful, Billker, Oliver, Tregoning, John S, Dougan, Gordon, Kellam, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3
cites cdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3
container_end_page e80723
container_issue 11
container_start_page e80723
container_title PloS one
container_volume 8
creator Everitt, Aaron R
Clare, Simon
McDonald, Jacqueline U
Kane, Leanne
Harcourt, Katherine
Ahras, Malika
Lall, Amar
Hale, Christine
Rodgers, Angela
Young, Douglas B
Haque, Ashraful
Billker, Oliver
Tregoning, John S
Dougan, Gordon
Kellam, Paul
description The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.
doi_str_mv 10.1371/journal.pone.0080723
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1460504766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478172054</galeid><doaj_id>oai_doaj_org_article_9e3566d8772d4f319075c3ea2baea247</doaj_id><sourcerecordid>A478172054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</originalsourceid><addsrcrecordid>eNqNk1lr3DAUhU1padK0_6C0hkJpH2aqzZL9UhiSLgOBQJc8Vsj2tUcTW5pYUpd_XznjhHHJQzHIRv7O0dWRbpI8x2iJqcDvtjYMRnXLnTWwRChHgtAHyTEuKFlwgujDg--j5IlzW4QymnP-ODkijIicYnKc_DiDRhtt2tRvIB2UaSG1TbpTfmNbMC51wVWw87rsIPU2XTfa9zQdwPlBV15bkwY3ylV6ZWx1ZYNPexscxLGG7mnyqFGdg2fT-yT5_vHDt9PPi_OLT-vT1fmiEgX3C4EI4IZgqlRNM6GIIE1ZCgZ5g3FR0oIQhnBVEEVYWTOAWhSi5jyvm4yzCJwkL_e-u846OUXjJGYcZYgJziOx3hO1VVu5G3Svhj_SKi1vJuzQSjV4XXUgC6AZ53UuBKlZQ3GBRFZRUKRUcWAiei32Xu4X7EI5czvTl6sbt9AHiXmWcxz591N1oeyhrsD4QXUz2fyP0RvZ2p-S5pSLbCz-zWQw2OsQs5e9jsfSdcpADHvcJ4llEjau9eof9P40JqpVccPaNDauW42mcsVEjgVBGYvU8h4qPjX0uor3rtFxfiZ4OxNExsNv36rgnFx__fL_7MXlnH19wG5AdX7jbBfG--fmINuD1WCdG6C5CxkjObbNbRpybBs5tU2UvTg8oDvRbZ_Qv156Egs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460504766</pqid></control><display><type>article</type><title>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Everitt, Aaron R ; Clare, Simon ; McDonald, Jacqueline U ; Kane, Leanne ; Harcourt, Katherine ; Ahras, Malika ; Lall, Amar ; Hale, Christine ; Rodgers, Angela ; Young, Douglas B ; Haque, Ashraful ; Billker, Oliver ; Tregoning, John S ; Dougan, Gordon ; Kellam, Paul</creator><contributor>Ikeda, Yasuhiro</contributor><creatorcontrib>Everitt, Aaron R ; Clare, Simon ; McDonald, Jacqueline U ; Kane, Leanne ; Harcourt, Katherine ; Ahras, Malika ; Lall, Amar ; Hale, Christine ; Rodgers, Angela ; Young, Douglas B ; Haque, Ashraful ; Billker, Oliver ; Tregoning, John S ; Dougan, Gordon ; Kellam, Paul ; Ikeda, Yasuhiro</creatorcontrib><description>The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0080723</identifier><identifier>PMID: 24278312</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject><![CDATA[Animal ; Animals ; Antiviral activity ; Bacteria ; Bacteria - metabolism ; Biological response modifiers ; Citrobacter ; Citrobacter rodentium - growth & development ; Citrobacter rodentium - physiology ; Citrobacter rodentium/growth & development/physiology ; College campuses ; Disease control ; Ethics ; Gene expression ; Genetic aspects ; Genomes ; Health aspects ; Homeostasis ; Immunology ; In vivo methods and tests ; Inbred C57BL ; Infection ; Infections ; Infectious diseases ; Influenza ; Influenza viruses ; Interferon ; Kinetics ; Knockout ; Laboratories ; Malaria - parasitology ; Medical research ; Membrane Proteins - deficiency ; Membrane Proteins - metabolism ; Membrane Proteins/deficiency/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Animal ; Mycobacterium tuberculosis - growth & development ; Mycobacterium tuberculosis - physiology ; Mycobacterium tuberculosis/growth & development/physiology ; Pathogenesis ; Pathogenic microorganisms ; Pathogens ; Phenotype ; Plasmodium berghei ; Plasmodium berghei - growth & development ; Plasmodium berghei - physiology ; Plasmodium berghei/growth & development/physiology ; Proteins ; Protozoa ; Respiratory syncytial virus ; Respiratory Syncytial Viruses - growth & development ; Respiratory Syncytial Viruses - physiology ; Respiratory Syncytial Viruses/growth & development/physiology ; Salmonella ; Salmonella typhimurium - physiology ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Tuberculosis ; Viral infections ; Virology ; Viruses]]></subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e80723-e80723</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Everitt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Everitt et al 2013 Everitt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</citedby><cites>FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1460504766/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1460504766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24278312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-165861$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Ikeda, Yasuhiro</contributor><creatorcontrib>Everitt, Aaron R</creatorcontrib><creatorcontrib>Clare, Simon</creatorcontrib><creatorcontrib>McDonald, Jacqueline U</creatorcontrib><creatorcontrib>Kane, Leanne</creatorcontrib><creatorcontrib>Harcourt, Katherine</creatorcontrib><creatorcontrib>Ahras, Malika</creatorcontrib><creatorcontrib>Lall, Amar</creatorcontrib><creatorcontrib>Hale, Christine</creatorcontrib><creatorcontrib>Rodgers, Angela</creatorcontrib><creatorcontrib>Young, Douglas B</creatorcontrib><creatorcontrib>Haque, Ashraful</creatorcontrib><creatorcontrib>Billker, Oliver</creatorcontrib><creatorcontrib>Tregoning, John S</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kellam, Paul</creatorcontrib><title>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.</description><subject>Animal</subject><subject>Animals</subject><subject>Antiviral activity</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biological response modifiers</subject><subject>Citrobacter</subject><subject>Citrobacter rodentium - growth &amp; development</subject><subject>Citrobacter rodentium - physiology</subject><subject>Citrobacter rodentium/growth &amp; development/physiology</subject><subject>College campuses</subject><subject>Disease control</subject><subject>Ethics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>In vivo methods and tests</subject><subject>Inbred C57BL</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza viruses</subject><subject>Interferon</subject><subject>Kinetics</subject><subject>Knockout</subject><subject>Laboratories</subject><subject>Malaria - parasitology</subject><subject>Medical research</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Proteins/deficiency/metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Animal</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Mycobacterium tuberculosis/growth &amp; development/physiology</subject><subject>Pathogenesis</subject><subject>Pathogenic microorganisms</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Plasmodium berghei</subject><subject>Plasmodium berghei - growth &amp; development</subject><subject>Plasmodium berghei - physiology</subject><subject>Plasmodium berghei/growth &amp; development/physiology</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Respiratory syncytial virus</subject><subject>Respiratory Syncytial Viruses - growth &amp; development</subject><subject>Respiratory Syncytial Viruses - physiology</subject><subject>Respiratory Syncytial Viruses/growth &amp; development/physiology</subject><subject>Salmonella</subject><subject>Salmonella typhimurium - physiology</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Tuberculosis</subject><subject>Viral infections</subject><subject>Virology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1lr3DAUhU1padK0_6C0hkJpH2aqzZL9UhiSLgOBQJc8Vsj2tUcTW5pYUpd_XznjhHHJQzHIRv7O0dWRbpI8x2iJqcDvtjYMRnXLnTWwRChHgtAHyTEuKFlwgujDg--j5IlzW4QymnP-ODkijIicYnKc_DiDRhtt2tRvIB2UaSG1TbpTfmNbMC51wVWw87rsIPU2XTfa9zQdwPlBV15bkwY3ylV6ZWx1ZYNPexscxLGG7mnyqFGdg2fT-yT5_vHDt9PPi_OLT-vT1fmiEgX3C4EI4IZgqlRNM6GIIE1ZCgZ5g3FR0oIQhnBVEEVYWTOAWhSi5jyvm4yzCJwkL_e-u846OUXjJGYcZYgJziOx3hO1VVu5G3Svhj_SKi1vJuzQSjV4XXUgC6AZ53UuBKlZQ3GBRFZRUKRUcWAiei32Xu4X7EI5czvTl6sbt9AHiXmWcxz591N1oeyhrsD4QXUz2fyP0RvZ2p-S5pSLbCz-zWQw2OsQs5e9jsfSdcpADHvcJ4llEjau9eof9P40JqpVccPaNDauW42mcsVEjgVBGYvU8h4qPjX0uor3rtFxfiZ4OxNExsNv36rgnFx__fL_7MXlnH19wG5AdX7jbBfG--fmINuD1WCdG6C5CxkjObbNbRpybBs5tU2UvTg8oDvRbZ_Qv156Egs</recordid><startdate>20131121</startdate><enddate>20131121</enddate><creator>Everitt, Aaron R</creator><creator>Clare, Simon</creator><creator>McDonald, Jacqueline U</creator><creator>Kane, Leanne</creator><creator>Harcourt, Katherine</creator><creator>Ahras, Malika</creator><creator>Lall, Amar</creator><creator>Hale, Christine</creator><creator>Rodgers, Angela</creator><creator>Young, Douglas B</creator><creator>Haque, Ashraful</creator><creator>Billker, Oliver</creator><creator>Tregoning, John S</creator><creator>Dougan, Gordon</creator><creator>Kellam, Paul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>DOA</scope></search><sort><creationdate>20131121</creationdate><title>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</title><author>Everitt, Aaron R ; Clare, Simon ; McDonald, Jacqueline U ; Kane, Leanne ; Harcourt, Katherine ; Ahras, Malika ; Lall, Amar ; Hale, Christine ; Rodgers, Angela ; Young, Douglas B ; Haque, Ashraful ; Billker, Oliver ; Tregoning, John S ; Dougan, Gordon ; Kellam, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal</topic><topic>Animals</topic><topic>Antiviral activity</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biological response modifiers</topic><topic>Citrobacter</topic><topic>Citrobacter rodentium - growth &amp; development</topic><topic>Citrobacter rodentium - physiology</topic><topic>Citrobacter rodentium/growth &amp; development/physiology</topic><topic>College campuses</topic><topic>Disease control</topic><topic>Ethics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>In vivo methods and tests</topic><topic>Inbred C57BL</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza viruses</topic><topic>Interferon</topic><topic>Kinetics</topic><topic>Knockout</topic><topic>Laboratories</topic><topic>Malaria - parasitology</topic><topic>Medical research</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Proteins/deficiency/metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Animal</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Mycobacterium tuberculosis/growth &amp; development/physiology</topic><topic>Pathogenesis</topic><topic>Pathogenic microorganisms</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Plasmodium berghei</topic><topic>Plasmodium berghei - growth &amp; development</topic><topic>Plasmodium berghei - physiology</topic><topic>Plasmodium berghei/growth &amp; development/physiology</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Respiratory syncytial virus</topic><topic>Respiratory Syncytial Viruses - growth &amp; development</topic><topic>Respiratory Syncytial Viruses - physiology</topic><topic>Respiratory Syncytial Viruses/growth &amp; development/physiology</topic><topic>Salmonella</topic><topic>Salmonella typhimurium - physiology</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Tuberculosis</topic><topic>Viral infections</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Everitt, Aaron R</creatorcontrib><creatorcontrib>Clare, Simon</creatorcontrib><creatorcontrib>McDonald, Jacqueline U</creatorcontrib><creatorcontrib>Kane, Leanne</creatorcontrib><creatorcontrib>Harcourt, Katherine</creatorcontrib><creatorcontrib>Ahras, Malika</creatorcontrib><creatorcontrib>Lall, Amar</creatorcontrib><creatorcontrib>Hale, Christine</creatorcontrib><creatorcontrib>Rodgers, Angela</creatorcontrib><creatorcontrib>Young, Douglas B</creatorcontrib><creatorcontrib>Haque, Ashraful</creatorcontrib><creatorcontrib>Billker, Oliver</creatorcontrib><creatorcontrib>Tregoning, John S</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kellam, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Everitt, Aaron R</au><au>Clare, Simon</au><au>McDonald, Jacqueline U</au><au>Kane, Leanne</au><au>Harcourt, Katherine</au><au>Ahras, Malika</au><au>Lall, Amar</au><au>Hale, Christine</au><au>Rodgers, Angela</au><au>Young, Douglas B</au><au>Haque, Ashraful</au><au>Billker, Oliver</au><au>Tregoning, John S</au><au>Dougan, Gordon</au><au>Kellam, Paul</au><au>Ikeda, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-21</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e80723</spage><epage>e80723</epage><pages>e80723-e80723</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24278312</pmid><doi>10.1371/journal.pone.0080723</doi><tpages>e80723</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-11, Vol.8 (11), p.e80723-e80723
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1460504766
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Coronavirus Research Database
subjects Animal
Animals
Antiviral activity
Bacteria
Bacteria - metabolism
Biological response modifiers
Citrobacter
Citrobacter rodentium - growth & development
Citrobacter rodentium - physiology
Citrobacter rodentium/growth & development/physiology
College campuses
Disease control
Ethics
Gene expression
Genetic aspects
Genomes
Health aspects
Homeostasis
Immunology
In vivo methods and tests
Inbred C57BL
Infection
Infections
Infectious diseases
Influenza
Influenza viruses
Interferon
Kinetics
Knockout
Laboratories
Malaria - parasitology
Medical research
Membrane Proteins - deficiency
Membrane Proteins - metabolism
Membrane Proteins/deficiency/metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Animal
Mycobacterium tuberculosis - growth & development
Mycobacterium tuberculosis - physiology
Mycobacterium tuberculosis/growth & development/physiology
Pathogenesis
Pathogenic microorganisms
Pathogens
Phenotype
Plasmodium berghei
Plasmodium berghei - growth & development
Plasmodium berghei - physiology
Plasmodium berghei/growth & development/physiology
Proteins
Protozoa
Respiratory syncytial virus
Respiratory Syncytial Viruses - growth & development
Respiratory Syncytial Viruses - physiology
Respiratory Syncytial Viruses/growth & development/physiology
Salmonella
Salmonella typhimurium - physiology
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Tuberculosis
Viral infections
Virology
Viruses
title Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20range%20of%20pathogens%20susceptible%20to%20Ifitm3%20restriction%20using%20a%20knockout%20mouse%20model&rft.jtitle=PloS%20one&rft.au=Everitt,%20Aaron%20R&rft.date=2013-11-21&rft.volume=8&rft.issue=11&rft.spage=e80723&rft.epage=e80723&rft.pages=e80723-e80723&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0080723&rft_dat=%3Cgale_plos_%3EA478172054%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c796t-702e1f213aad357a272fbb74e8f119b3922401c92a24bd4eed797d668df5649b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1460504766&rft_id=info:pmid/24278312&rft_galeid=A478172054&rfr_iscdi=true