Loading…

Human serum albumin and p53-activating peptide fusion protein is able to promote apoptosis and deliver fatty acid-modified molecules

Therapeutic peptides offer a high degree of specificity, potency, and low toxicity; making them promising candidates for cancer therapy. Despite these advantages, a number of hurdles, such as poor serum stability and inefficient cellular penetration, must be overcome. Fusing a therapeutic peptide to...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-11, Vol.8 (11), p.e80926
Main Authors: Joshi, Michelle R, Yao, Nianhuan, Myers, Kenneth A, Li, Zhiyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Therapeutic peptides offer a high degree of specificity, potency, and low toxicity; making them promising candidates for cancer therapy. Despite these advantages, a number of hurdles, such as poor serum stability and inefficient cellular penetration, must be overcome. Fusing a therapeutic peptide to human serum albumin (HSA) is a common approach to extend the serum stability of a peptide that binds to extracellular receptors. However, no study has shown that this approach can be applied to target intracellular proteins. Here we demonstrate the feasibility of using a recombinant human serum albumin (rHSA) fusion protein to simultaneously deliver two types of molecules: a peptide capable of binding an intracellular target, as well as fatty acid (FA)-modified FITC (FA-FITC). Two peptides reported to disrupt the intracellular p53 and MDM2/MDMX interaction were fused to the C-terminal of HSA. Cellular and biochemical studies indicate that rHSA fusion proteins were efficiently taken up by SJSA-1 cells and retained MDM2- and MDMX-binding activity. By inducing the accumulation of p53, both fusion proteins promoted efficient cytotoxicity in SJSA-1 cells via caspase activation. Long chain fatty acid (LCFA) transportation is an essential endogenous function of HSA. This study also demonstrates that rHSA fusion proteins formed highly stable complexes with FA-FITC via non-covalent interactions. FA-FITC complexed with HSA could be internalized efficiently and rHSA-P53i and rHSA-PMI retained apoptotic activity as complex components. It is expected that such an approach can ultimately be used to facilitate intracellular delivery of two anticancer therapeutics, each with distinct but complimentary mechanisms, to achieve synergistic efficacy.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0080926