Loading…

Reliable neuronal systems: the importance of heterogeneity

For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge varianc...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-12, Vol.8 (12), p.e80694-e80694
Main Authors: Lengler, Johannes, Jug, Florian, Steger, Angelika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3
cites cdi_FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3
container_end_page e80694
container_issue 12
container_start_page e80694
container_title PloS one
container_volume 8
creator Lengler, Johannes
Jug, Florian
Steger, Angelika
description For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.
doi_str_mv 10.1371/journal.pone.0080694
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1464982410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478431791</galeid><doaj_id>oai_doaj_org_article_1ef6723306754f5a8947864351c53635</doaj_id><sourcerecordid>A478431791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi12TyMZNeCKX4sVAo1I_bkM2c7GbJTNYkI-6_N9udlh3pheQi4eQ57zkneYviJUZzTGr8YeOH0Cs33_oe5gg1iAv6qDjFglQzXiHy-Oh8UjyLcYMQIw3nT4uTipKK8gqfFuc34KxaOih7GILPgmXcxQRdPC_TGkrbbX1IqtdQelOuIUHwK-jBpt3z4olRLsKLcT8rfnz-9P3y6-zq-svi8uJqprmo0oyTCi0bRFpqFBK4xpi2gmMtDDOGCaxQJhq2FKLCxmgjWqExE0ud421dK3JWvD7obp2Pchw7Skw5FU1FMcrE4kC0Xm3kNthOhZ30ysrbgA8rqUKy2oHEYHhdEYJ4zahhqhG0bjglDGtGOGFZ6-NYbVh20GroU1BuIjq96e1arvxvSRq2bykLvBsFgv81QEyys1GDc6oHP9z2XSNesVpk9M0_6MPTjdRK5QFsb3yuq_ei8iI3TwmuBc7U_AEqrxY6q7NHjM3xScL7SUJmEvxJKzXEKBffbv6fvf45Zd8esWtQLq2jd0Oyvo9TkB5AHXyMAcz9I2Mk9xa_ew25t7gcLZ7TXh1_0H3SnafJXy3j83s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464982410</pqid></control><display><type>article</type><title>Reliable neuronal systems: the importance of heterogeneity</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lengler, Johannes ; Jug, Florian ; Steger, Angelika</creator><contributor>Chacron, Maurice J.</contributor><creatorcontrib>Lengler, Johannes ; Jug, Florian ; Steger, Angelika ; Chacron, Maurice J.</creatorcontrib><description>For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0080694</identifier><identifier>PMID: 24324621</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism ; Animals ; Brain ; Brain - physiology ; Computer science ; Computer Simulation ; Computers ; Defects ; Energy efficiency ; Excitatory Postsynaptic Potentials - physiology ; Experiments ; gamma-Aminobutyric Acid - metabolism ; Genetic Heterogeneity ; Heterogeneity ; Humans ; Learning - physiology ; Models, Neurological ; Nerve Net - physiology ; Neuronal Plasticity - genetics ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neurosciences ; Physiology ; Poisson Distribution ; Population ; Receptors, AMPA - genetics ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Signal processing ; Standard deviation ; Synapses ; Synapses - physiology ; Synaptic plasticity ; Synaptic Transmission - physiology ; Variability</subject><ispartof>PloS one, 2013-12, Vol.8 (12), p.e80694-e80694</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Lengler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Lengler et al 2013 Lengler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3</citedby><cites>FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1464982410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1464982410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24324621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chacron, Maurice J.</contributor><creatorcontrib>Lengler, Johannes</creatorcontrib><creatorcontrib>Jug, Florian</creatorcontrib><creatorcontrib>Steger, Angelika</creatorcontrib><title>Reliable neuronal systems: the importance of heterogeneity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.</description><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Computers</subject><subject>Defects</subject><subject>Energy efficiency</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Experiments</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Genetic Heterogeneity</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Physiology</subject><subject>Poisson Distribution</subject><subject>Population</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Signal processing</subject><subject>Standard deviation</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><subject>Variability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi12TyMZNeCKX4sVAo1I_bkM2c7GbJTNYkI-6_N9udlh3pheQi4eQ57zkneYviJUZzTGr8YeOH0Cs33_oe5gg1iAv6qDjFglQzXiHy-Oh8UjyLcYMQIw3nT4uTipKK8gqfFuc34KxaOih7GILPgmXcxQRdPC_TGkrbbX1IqtdQelOuIUHwK-jBpt3z4olRLsKLcT8rfnz-9P3y6-zq-svi8uJqprmo0oyTCi0bRFpqFBK4xpi2gmMtDDOGCaxQJhq2FKLCxmgjWqExE0ud421dK3JWvD7obp2Pchw7Skw5FU1FMcrE4kC0Xm3kNthOhZ30ysrbgA8rqUKy2oHEYHhdEYJ4zahhqhG0bjglDGtGOGFZ6-NYbVh20GroU1BuIjq96e1arvxvSRq2bykLvBsFgv81QEyys1GDc6oHP9z2XSNesVpk9M0_6MPTjdRK5QFsb3yuq_ei8iI3TwmuBc7U_AEqrxY6q7NHjM3xScL7SUJmEvxJKzXEKBffbv6fvf45Zd8esWtQLq2jd0Oyvo9TkB5AHXyMAcz9I2Mk9xa_ew25t7gcLZ7TXh1_0H3SnafJXy3j83s</recordid><startdate>20131204</startdate><enddate>20131204</enddate><creator>Lengler, Johannes</creator><creator>Jug, Florian</creator><creator>Steger, Angelika</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131204</creationdate><title>Reliable neuronal systems: the importance of heterogeneity</title><author>Lengler, Johannes ; Jug, Florian ; Steger, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Computers</topic><topic>Defects</topic><topic>Energy efficiency</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Experiments</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Genetic Heterogeneity</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Physiology</topic><topic>Poisson Distribution</topic><topic>Population</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Signal processing</topic><topic>Standard deviation</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lengler, Johannes</creatorcontrib><creatorcontrib>Jug, Florian</creatorcontrib><creatorcontrib>Steger, Angelika</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lengler, Johannes</au><au>Jug, Florian</au><au>Steger, Angelika</au><au>Chacron, Maurice J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable neuronal systems: the importance of heterogeneity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-12-04</date><risdate>2013</risdate><volume>8</volume><issue>12</issue><spage>e80694</spage><epage>e80694</epage><pages>e80694-e80694</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24324621</pmid><doi>10.1371/journal.pone.0080694</doi><tpages>e80694</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-12, Vol.8 (12), p.e80694-e80694
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1464982410
source Publicly Available Content Database; PubMed Central
subjects alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism
Animals
Brain
Brain - physiology
Computer science
Computer Simulation
Computers
Defects
Energy efficiency
Excitatory Postsynaptic Potentials - physiology
Experiments
gamma-Aminobutyric Acid - metabolism
Genetic Heterogeneity
Heterogeneity
Humans
Learning - physiology
Models, Neurological
Nerve Net - physiology
Neuronal Plasticity - genetics
Neurons
Neurons - cytology
Neurons - metabolism
Neurosciences
Physiology
Poisson Distribution
Population
Receptors, AMPA - genetics
Receptors, AMPA - metabolism
Receptors, N-Methyl-D-Aspartate - genetics
Receptors, N-Methyl-D-Aspartate - metabolism
Signal processing
Standard deviation
Synapses
Synapses - physiology
Synaptic plasticity
Synaptic Transmission - physiology
Variability
title Reliable neuronal systems: the importance of heterogeneity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20neuronal%20systems:%20the%20importance%20of%20heterogeneity&rft.jtitle=PloS%20one&rft.au=Lengler,%20Johannes&rft.date=2013-12-04&rft.volume=8&rft.issue=12&rft.spage=e80694&rft.epage=e80694&rft.pages=e80694-e80694&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0080694&rft_dat=%3Cgale_plos_%3EA478431791%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-6320b803d4fa0917114d961c9f5ff591a063285b9921ffcf9d9c159bc063d77a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464982410&rft_id=info:pmid/24324621&rft_galeid=A478431791&rfr_iscdi=true