Loading…

Inhibitory effects of vinpocetine on the progression of atherosclerosis are mediated by Akt/NF-κB dependent mechanisms in apoE-/- mice

Recent studies have found additional roles for vinpocetine, a potent phosphodiesterase type I inhibitor, in anti-proliferation and anti-inflammation of vascular smooth muscle cells and cancer cells via different mechanisms. In this study, we attempted to investigate whether vinpocetine protected aga...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-12, Vol.8 (12), p.e82509-e82509
Main Authors: Zhuang, Jianhui, Peng, Wenhui, Li, Hailing, Lu, Yuyan, Wang, Ke, Fan, Fan, Li, Shuang, Xu, Yawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies have found additional roles for vinpocetine, a potent phosphodiesterase type I inhibitor, in anti-proliferation and anti-inflammation of vascular smooth muscle cells and cancer cells via different mechanisms. In this study, we attempted to investigate whether vinpocetine protected against atherosclerotic development in apoE(-/-) mice and explore the underlying anti-atherogenic mechanisms in macrophages. Vinpocetine markedly decreased atherosclerotic lesion size in apoE(-/-) mice measured by oil red O. Masson's trichrome staining and immunohistochemical analyses revealed that vinpocetine significantly increased the thickness of fibrous cap, reduced the size of lipid-rich necrotic core and attenuated inflammation. In vitro experiments exhibited a significant decrease in monocyte adhesion treated with vinpocetine. Further, active TNF-α, IL-6, monocyte chemoattractant protein-1 and matrix metalloproteinase-9 expression induced by ox-LDL were attenuated by vinpocetine in a dose-dependent manner. Similarly, ox-LDL-induced reactive oxygen species were significantly repressed by vinpocetine. Both western blot and luciferase activity assay showed that vinpocetine inhibited the enhanced Akt, IKKα/β, IκBα phosphorylation and NF-κB activity induced by ox-LDL, and the inhibition of NF-κB activity was partly caused by Akt dephosphorylation. However, knockdown of PDE1B did not affect Akt, IKKα/β and IκBα phosphorylation. These results suggest that vinpocetine exerts anti-atherogenic effects through inhibition of monocyte adhesion, oxidative stress and inflammatory response, which are mediated by Akt/NF-κB dependent pathway but independent of PDE1 blockade in macrophages.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0082509