Loading…

Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures

Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structu...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-12, Vol.8 (12), p.e83499-e83499
Main Authors: Rehman, Asma, Jarrott, Russell J, Whitten, Andrew E, King, Gordon J, Hu, Shu-Hong, Christie, Michelle P, Collins, Brett M, Martin, Jennifer L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03
cites cdi_FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03
container_end_page e83499
container_issue 12
container_start_page e83499
container_title PloS one
container_volume 8
creator Rehman, Asma
Jarrott, Russell J
Whitten, Andrew E
King, Gordon J
Hu, Shu-Hong
Christie, Michelle P
Collins, Brett M
Martin, Jennifer L
description Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.
doi_str_mv 10.1371/journal.pone.0083499
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1473341067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477926952</galeid><doaj_id>oai_doaj_org_article_1f122e2f27a84a0b9f9201719cfb7460</doaj_id><sourcerecordid>A477926952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03</originalsourceid><addsrcrecordid>eNqNk0tr3DAQx01paR7tNyitoRDaw271sC3rUgghbRcSAn1dhawd2VpkayPJpf321WadsC45FB0kZn7zn9FIk2WvMFpiyvCHjRv9IO1y6wZYIlTTgvMn2THmlCwqgujTg_NRdhLCBqGS1lX1PDsiBeWYsfI4666Ntab1ss9vRzlEEw2E3Om8c71rYQA3htyDcn1jhuTP9WjtwsLQxi7vkxPy63FQuFa59q7PL4PqwBvVGZkrZ02uRhtHD-FF9kxLG-DltJ9mPz5dfr_4sri6-by6OL9aqIqTuCCUKCYVlGuuWakqjCuKteJl3TSMY-BQApd1XTNJ5JojRlRTNlhjVehaakRPszd73a11QUxNCgIXjNICo4olYrUn1k5uxNabXvo_wkkj7gzOt0L6aJQFkXQJAaIJk3UhUcM1JwgzzJVuWFHtsn2cso1ND2sFQ_TSzkTnnsF0onW_BK0ZQ8WumHeTgHe3I4QoehMUWCvvWp_q5qjijFQ0oW__QR-_3US1Ml3ADNqlvGonKs4LxjipeEkStXyESmsNvVHpR2mT7LOA97OAxET4HVs5hiBW377-P3vzc86eHbAdSBu74OwYjRvCHCz2oPIuBA_6ockYid1A3HdD7AZCTAORwl4fPtBD0P0E0L-k4Abd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473341067</pqid></control><display><type>article</type><title>Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Rehman, Asma ; Jarrott, Russell J ; Whitten, Andrew E ; King, Gordon J ; Hu, Shu-Hong ; Christie, Michelle P ; Collins, Brett M ; Martin, Jennifer L</creator><contributor>Khan, Rizwan H.</contributor><creatorcontrib>Rehman, Asma ; Jarrott, Russell J ; Whitten, Andrew E ; King, Gordon J ; Hu, Shu-Hong ; Christie, Michelle P ; Collins, Brett M ; Martin, Jennifer L ; Khan, Rizwan H.</creatorcontrib><description>Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0083499</identifier><identifier>PMID: 24391775</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose tissue ; Animals ; Bacteria ; Biology ; Cell culture ; Cell surface ; Cloning ; Codon - genetics ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene expression ; Insect cells ; Insects ; Insulin ; Mice ; Multiprotein Complexes - isolation &amp; purification ; Multiprotein Complexes - metabolism ; Munc18 protein ; Munc18 Proteins - biosynthesis ; Munc18 Proteins - genetics ; Munc18 Proteins - metabolism ; Muscles ; Peptides ; Physiology ; Post-translation ; Protein Binding ; Protein Engineering ; Proteins ; Qa-SNARE Proteins - genetics ; Qa-SNARE Proteins - metabolism ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sf9 Cells ; SNARE Proteins - metabolism ; Spodoptera ; Thermodynamics ; Thrombin ; Tobacco ; Vesicle fusion ; Viruses</subject><ispartof>PloS one, 2013-12, Vol.8 (12), p.e83499-e83499</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rehman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rehman et al 2013 Rehman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03</citedby><cites>FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1473341067/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1473341067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24391775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khan, Rizwan H.</contributor><creatorcontrib>Rehman, Asma</creatorcontrib><creatorcontrib>Jarrott, Russell J</creatorcontrib><creatorcontrib>Whitten, Andrew E</creatorcontrib><creatorcontrib>King, Gordon J</creatorcontrib><creatorcontrib>Hu, Shu-Hong</creatorcontrib><creatorcontrib>Christie, Michelle P</creatorcontrib><creatorcontrib>Collins, Brett M</creatorcontrib><creatorcontrib>Martin, Jennifer L</creatorcontrib><title>Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.</description><subject>Adipose tissue</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biology</subject><subject>Cell culture</subject><subject>Cell surface</subject><subject>Cloning</subject><subject>Codon - genetics</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene expression</subject><subject>Insect cells</subject><subject>Insects</subject><subject>Insulin</subject><subject>Mice</subject><subject>Multiprotein Complexes - isolation &amp; purification</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Munc18 protein</subject><subject>Munc18 Proteins - biosynthesis</subject><subject>Munc18 Proteins - genetics</subject><subject>Munc18 Proteins - metabolism</subject><subject>Muscles</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Post-translation</subject><subject>Protein Binding</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Qa-SNARE Proteins - genetics</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sf9 Cells</subject><subject>SNARE Proteins - metabolism</subject><subject>Spodoptera</subject><subject>Thermodynamics</subject><subject>Thrombin</subject><subject>Tobacco</subject><subject>Vesicle fusion</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAQx01paR7tNyitoRDaw271sC3rUgghbRcSAn1dhawd2VpkayPJpf321WadsC45FB0kZn7zn9FIk2WvMFpiyvCHjRv9IO1y6wZYIlTTgvMn2THmlCwqgujTg_NRdhLCBqGS1lX1PDsiBeWYsfI4666Ntab1ss9vRzlEEw2E3Om8c71rYQA3htyDcn1jhuTP9WjtwsLQxi7vkxPy63FQuFa59q7PL4PqwBvVGZkrZ02uRhtHD-FF9kxLG-DltJ9mPz5dfr_4sri6-by6OL9aqIqTuCCUKCYVlGuuWakqjCuKteJl3TSMY-BQApd1XTNJ5JojRlRTNlhjVehaakRPszd73a11QUxNCgIXjNICo4olYrUn1k5uxNabXvo_wkkj7gzOt0L6aJQFkXQJAaIJk3UhUcM1JwgzzJVuWFHtsn2cso1ND2sFQ_TSzkTnnsF0onW_BK0ZQ8WumHeTgHe3I4QoehMUWCvvWp_q5qjijFQ0oW__QR-_3US1Ml3ADNqlvGonKs4LxjipeEkStXyESmsNvVHpR2mT7LOA97OAxET4HVs5hiBW377-P3vzc86eHbAdSBu74OwYjRvCHCz2oPIuBA_6ockYid1A3HdD7AZCTAORwl4fPtBD0P0E0L-k4Abd</recordid><startdate>20131231</startdate><enddate>20131231</enddate><creator>Rehman, Asma</creator><creator>Jarrott, Russell J</creator><creator>Whitten, Andrew E</creator><creator>King, Gordon J</creator><creator>Hu, Shu-Hong</creator><creator>Christie, Michelle P</creator><creator>Collins, Brett M</creator><creator>Martin, Jennifer L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131231</creationdate><title>Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures</title><author>Rehman, Asma ; Jarrott, Russell J ; Whitten, Andrew E ; King, Gordon J ; Hu, Shu-Hong ; Christie, Michelle P ; Collins, Brett M ; Martin, Jennifer L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adipose tissue</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biology</topic><topic>Cell culture</topic><topic>Cell surface</topic><topic>Cloning</topic><topic>Codon - genetics</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene expression</topic><topic>Insect cells</topic><topic>Insects</topic><topic>Insulin</topic><topic>Mice</topic><topic>Multiprotein Complexes - isolation &amp; purification</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Munc18 protein</topic><topic>Munc18 Proteins - biosynthesis</topic><topic>Munc18 Proteins - genetics</topic><topic>Munc18 Proteins - metabolism</topic><topic>Muscles</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Post-translation</topic><topic>Protein Binding</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Qa-SNARE Proteins - genetics</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sf9 Cells</topic><topic>SNARE Proteins - metabolism</topic><topic>Spodoptera</topic><topic>Thermodynamics</topic><topic>Thrombin</topic><topic>Tobacco</topic><topic>Vesicle fusion</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Asma</creatorcontrib><creatorcontrib>Jarrott, Russell J</creatorcontrib><creatorcontrib>Whitten, Andrew E</creatorcontrib><creatorcontrib>King, Gordon J</creatorcontrib><creatorcontrib>Hu, Shu-Hong</creatorcontrib><creatorcontrib>Christie, Michelle P</creatorcontrib><creatorcontrib>Collins, Brett M</creatorcontrib><creatorcontrib>Martin, Jennifer L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Asma</au><au>Jarrott, Russell J</au><au>Whitten, Andrew E</au><au>King, Gordon J</au><au>Hu, Shu-Hong</au><au>Christie, Michelle P</au><au>Collins, Brett M</au><au>Martin, Jennifer L</au><au>Khan, Rizwan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-12-31</date><risdate>2013</risdate><volume>8</volume><issue>12</issue><spage>e83499</spage><epage>e83499</epage><pages>e83499-e83499</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24391775</pmid><doi>10.1371/journal.pone.0083499</doi><tpages>e83499</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-12, Vol.8 (12), p.e83499-e83499
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1473341067
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects Adipose tissue
Animals
Bacteria
Biology
Cell culture
Cell surface
Cloning
Codon - genetics
E coli
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Gene expression
Insect cells
Insects
Insulin
Mice
Multiprotein Complexes - isolation & purification
Multiprotein Complexes - metabolism
Munc18 protein
Munc18 Proteins - biosynthesis
Munc18 Proteins - genetics
Munc18 Proteins - metabolism
Muscles
Peptides
Physiology
Post-translation
Protein Binding
Protein Engineering
Proteins
Qa-SNARE Proteins - genetics
Qa-SNARE Proteins - metabolism
Recombinant Proteins - biosynthesis
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sf9 Cells
SNARE Proteins - metabolism
Spodoptera
Thermodynamics
Thrombin
Tobacco
Vesicle fusion
Viruses
title Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Milligram%20quantities%20of%20homogeneous%20recombinant%20full-length%20mouse%20Munc18c%20from%20Escherichia%20coli%20cultures&rft.jtitle=PloS%20one&rft.au=Rehman,%20Asma&rft.date=2013-12-31&rft.volume=8&rft.issue=12&rft.spage=e83499&rft.epage=e83499&rft.pages=e83499-e83499&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0083499&rft_dat=%3Cgale_plos_%3EA477926952%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-232c7ace5d9f75c611631fc958bb791e9e5e9a8887a2ad9072cb5b1f1c4f8af03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1473341067&rft_id=info:pmid/24391775&rft_galeid=A477926952&rfr_iscdi=true