Loading…

Mathematical modeling predicts enhanced growth of X-ray irradiated pigmented fungi

Ionizing radiation is known for its cytotoxic and mutagenic properties. However, recent evidence suggests that chronic sub-lethal irradiation stimulates the growth of melanin-pigmented (melanized) fungi, supporting the hypothesis that interactions between melanin and ionizing photons generate energy...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-01, Vol.9 (1), p.e85561
Main Authors: Shuryak, Igor, Bryan, Ruth A, Nosanchuk, Joshua D, Dadachova, Ekaterina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ionizing radiation is known for its cytotoxic and mutagenic properties. However, recent evidence suggests that chronic sub-lethal irradiation stimulates the growth of melanin-pigmented (melanized) fungi, supporting the hypothesis that interactions between melanin and ionizing photons generate energy useful for fungal growth, and/or regulate growth-promoting genes. There are no quantitative models of how fungal proliferation is affected by ionizing photon energy, dose rate, and presence versus absence of melanin on the same genetic background. Here we present such a model, which we test using experimental data on melanin-modulated radiation-induced proliferation enhancement in the fungus Cryptococcus neoformans, exposed to two different peak energies (150 and 320 kVp) over a wide range of X-ray dose rates. Our analysis demonstrates that radiation-induced proliferation enhancement in C. neoformans behaves as a binary "on/off" phenomenon, which is triggered by dose rates 5000 mGy/h. Proliferation enhancement of irradiated cells compared with unirradiated controls occurs at both X-ray peak energies, but its magnitude is modulated by X-ray peak energy and cell melanization. At dose rates
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0085561