Loading…

Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs

The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2013-12, Vol.9 (12), p.e1003395-e1003395
Main Authors: Blachly, Patrick G, de Oliveira, César A F, Williams, Sarah L, McCammon, J Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73
cites cdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73
container_end_page e1003395
container_issue 12
container_start_page e1003395
container_title PLoS computational biology
container_volume 9
creator Blachly, Patrick G
de Oliveira, César A F
Williams, Sarah L
McCammon, J Andrew
description The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.
doi_str_mv 10.1371/journal.pcbi.1003395
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1477947751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357758636</galeid><doaj_id>oai_doaj_org_article_904f006145a6418fbd9b09e61ede7065</doaj_id><sourcerecordid>A357758636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbF39B6ID3ujFrslmkkxuhFLULhQFtdcxXzNNmU2mSaZYf71n3G3pgjcyhMnHc96cnPNW1UuMVphw_P4qTimoYTUa7VcYIUIEfVQdY0rJkhPaPn4wP6qe5XwFDG0Fe1odrRvC-Lppj6ufF8UP_rcPfa1qexvU1hs11NZlk_xYfAx17OpNHs_qEmvlbe1DXS4dEDduiOPWhTITIcKyVqF4EEhR-1kkTX1-Xj3p1JDdi_1_UV18-vjj9Gx5_vXz5vTkfGmYEGUpGKedMEhYZKxeO2uM4Lo1aM0bTW3j2sZhjVHTaoqxVZ22TjOhjRWGU8vJonq90x2HmOW-OFnihnMBg2IgNjvCRnUlx-S3Kt3KqLz8uxFTL1Uq3gxOCtR0CDHcUMUa3MJlQiPhGHbWccQoaH3Y3zbpLSQLVUhqOBA9PAn-UvbxRpKWtXQ9C7zdC6R4Pblc5NZn44ZBBRenOW-BOLwdOrWo3uzQXkFqPnQRFM2MyxNC4WktIwyo1T8o-KyDjsTgOg_7BwHvDgKAKe5X6dWUs9x8__Yf7JdDttmxYIOck-vuq4KRnJ171xw5O1funQthrx5W9D7ozqrkD7yX6zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490727424</pqid></control><display><type>article</type><title>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Blachly, Patrick G ; de Oliveira, César A F ; Williams, Sarah L ; McCammon, J Andrew</creator><contributor>Briggs, James M.</contributor><creatorcontrib>Blachly, Patrick G ; de Oliveira, César A F ; Williams, Sarah L ; McCammon, J Andrew ; Briggs, James M.</creatorcontrib><description>The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003395</identifier><identifier>PMID: 24367248</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anti-infective agents ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Antimicrobial agents ; Bacterial infections ; Bacterial Proteins - chemistry ; Catalytic Domain ; Colleges &amp; universities ; Crystal structure ; Drug Design ; Drug resistance ; Hydrogen-ion concentration ; Ligands ; Malaria ; Models, Theoretical ; Molecular Dynamics Simulation ; Pharmaceutical chemistry ; Pharmaceutical research ; Principal Component Analysis ; Principal components analysis ; Production processes ; Protein Binding ; Protein Conformation ; Proteins ; Staphylococcus infections ; Tuberculosis</subject><ispartof>PLoS computational biology, 2013-12, Vol.9 (12), p.e1003395-e1003395</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Blachly et al 2013 Blachly et al</rights><rights>2013 Blachly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Blachly PG, de Oliveira CAF, Williams SL, McCammon JA (2013) Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs. PLoS Comput Biol 9(12): e1003395. doi:10.1371/journal.pcbi.1003395</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</citedby><cites>FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24367248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Briggs, James M.</contributor><creatorcontrib>Blachly, Patrick G</creatorcontrib><creatorcontrib>de Oliveira, César A F</creatorcontrib><creatorcontrib>Williams, Sarah L</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.</description><subject>Anti-infective agents</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antimicrobial agents</subject><subject>Bacterial infections</subject><subject>Bacterial Proteins - chemistry</subject><subject>Catalytic Domain</subject><subject>Colleges &amp; universities</subject><subject>Crystal structure</subject><subject>Drug Design</subject><subject>Drug resistance</subject><subject>Hydrogen-ion concentration</subject><subject>Ligands</subject><subject>Malaria</subject><subject>Models, Theoretical</subject><subject>Molecular Dynamics Simulation</subject><subject>Pharmaceutical chemistry</subject><subject>Pharmaceutical research</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Production processes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Staphylococcus infections</subject><subject>Tuberculosis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbF39B6ID3ujFrslmkkxuhFLULhQFtdcxXzNNmU2mSaZYf71n3G3pgjcyhMnHc96cnPNW1UuMVphw_P4qTimoYTUa7VcYIUIEfVQdY0rJkhPaPn4wP6qe5XwFDG0Fe1odrRvC-Lppj6ufF8UP_rcPfa1qexvU1hs11NZlk_xYfAx17OpNHs_qEmvlbe1DXS4dEDduiOPWhTITIcKyVqF4EEhR-1kkTX1-Xj3p1JDdi_1_UV18-vjj9Gx5_vXz5vTkfGmYEGUpGKedMEhYZKxeO2uM4Lo1aM0bTW3j2sZhjVHTaoqxVZ22TjOhjRWGU8vJonq90x2HmOW-OFnihnMBg2IgNjvCRnUlx-S3Kt3KqLz8uxFTL1Uq3gxOCtR0CDHcUMUa3MJlQiPhGHbWccQoaH3Y3zbpLSQLVUhqOBA9PAn-UvbxRpKWtXQ9C7zdC6R4Pblc5NZn44ZBBRenOW-BOLwdOrWo3uzQXkFqPnQRFM2MyxNC4WktIwyo1T8o-KyDjsTgOg_7BwHvDgKAKe5X6dWUs9x8__Yf7JdDttmxYIOck-vuq4KRnJ171xw5O1funQthrx5W9D7ozqrkD7yX6zw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Blachly, Patrick G</creator><creator>de Oliveira, César A F</creator><creator>Williams, Sarah L</creator><creator>McCammon, J Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131201</creationdate><title>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</title><author>Blachly, Patrick G ; de Oliveira, César A F ; Williams, Sarah L ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anti-infective agents</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antimicrobial agents</topic><topic>Bacterial infections</topic><topic>Bacterial Proteins - chemistry</topic><topic>Catalytic Domain</topic><topic>Colleges &amp; universities</topic><topic>Crystal structure</topic><topic>Drug Design</topic><topic>Drug resistance</topic><topic>Hydrogen-ion concentration</topic><topic>Ligands</topic><topic>Malaria</topic><topic>Models, Theoretical</topic><topic>Molecular Dynamics Simulation</topic><topic>Pharmaceutical chemistry</topic><topic>Pharmaceutical research</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Production processes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Staphylococcus infections</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blachly, Patrick G</creatorcontrib><creatorcontrib>de Oliveira, César A F</creatorcontrib><creatorcontrib>Williams, Sarah L</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blachly, Patrick G</au><au>de Oliveira, César A F</au><au>Williams, Sarah L</au><au>McCammon, J Andrew</au><au>Briggs, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>9</volume><issue>12</issue><spage>e1003395</spage><epage>e1003395</epage><pages>e1003395-e1003395</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24367248</pmid><doi>10.1371/journal.pcbi.1003395</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-12, Vol.9 (12), p.e1003395-e1003395
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1477947751
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Anti-infective agents
Anti-Infective Agents - chemistry
Anti-Infective Agents - pharmacology
Antimicrobial agents
Bacterial infections
Bacterial Proteins - chemistry
Catalytic Domain
Colleges & universities
Crystal structure
Drug Design
Drug resistance
Hydrogen-ion concentration
Ligands
Malaria
Models, Theoretical
Molecular Dynamics Simulation
Pharmaceutical chemistry
Pharmaceutical research
Principal Component Analysis
Principal components analysis
Production processes
Protein Binding
Protein Conformation
Proteins
Staphylococcus infections
Tuberculosis
title Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20a%20dynamical%20description%20of%20IspH%20to%20aid%20in%20the%20development%20of%20novel%20antimicrobial%20drugs&rft.jtitle=PLoS%20computational%20biology&rft.au=Blachly,%20Patrick%20G&rft.date=2013-12-01&rft.volume=9&rft.issue=12&rft.spage=e1003395&rft.epage=e1003395&rft.pages=e1003395-e1003395&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003395&rft_dat=%3Cgale_plos_%3EA357758636%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490727424&rft_id=info:pmid/24367248&rft_galeid=A357758636&rfr_iscdi=true