Loading…
Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4...
Saved in:
Published in: | PLoS computational biology 2013-12, Vol.9 (12), p.e1003395-e1003395 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73 |
container_end_page | e1003395 |
container_issue | 12 |
container_start_page | e1003395 |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Blachly, Patrick G de Oliveira, César A F Williams, Sarah L McCammon, J Andrew |
description | The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. |
doi_str_mv | 10.1371/journal.pcbi.1003395 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1477947751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357758636</galeid><doaj_id>oai_doaj_org_article_904f006145a6418fbd9b09e61ede7065</doaj_id><sourcerecordid>A357758636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbF39B6ID3ujFrslmkkxuhFLULhQFtdcxXzNNmU2mSaZYf71n3G3pgjcyhMnHc96cnPNW1UuMVphw_P4qTimoYTUa7VcYIUIEfVQdY0rJkhPaPn4wP6qe5XwFDG0Fe1odrRvC-Lppj6ufF8UP_rcPfa1qexvU1hs11NZlk_xYfAx17OpNHs_qEmvlbe1DXS4dEDduiOPWhTITIcKyVqF4EEhR-1kkTX1-Xj3p1JDdi_1_UV18-vjj9Gx5_vXz5vTkfGmYEGUpGKedMEhYZKxeO2uM4Lo1aM0bTW3j2sZhjVHTaoqxVZ22TjOhjRWGU8vJonq90x2HmOW-OFnihnMBg2IgNjvCRnUlx-S3Kt3KqLz8uxFTL1Uq3gxOCtR0CDHcUMUa3MJlQiPhGHbWccQoaH3Y3zbpLSQLVUhqOBA9PAn-UvbxRpKWtXQ9C7zdC6R4Pblc5NZn44ZBBRenOW-BOLwdOrWo3uzQXkFqPnQRFM2MyxNC4WktIwyo1T8o-KyDjsTgOg_7BwHvDgKAKe5X6dWUs9x8__Yf7JdDttmxYIOck-vuq4KRnJ171xw5O1funQthrx5W9D7ozqrkD7yX6zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490727424</pqid></control><display><type>article</type><title>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Blachly, Patrick G ; de Oliveira, César A F ; Williams, Sarah L ; McCammon, J Andrew</creator><contributor>Briggs, James M.</contributor><creatorcontrib>Blachly, Patrick G ; de Oliveira, César A F ; Williams, Sarah L ; McCammon, J Andrew ; Briggs, James M.</creatorcontrib><description>The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003395</identifier><identifier>PMID: 24367248</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anti-infective agents ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Antimicrobial agents ; Bacterial infections ; Bacterial Proteins - chemistry ; Catalytic Domain ; Colleges & universities ; Crystal structure ; Drug Design ; Drug resistance ; Hydrogen-ion concentration ; Ligands ; Malaria ; Models, Theoretical ; Molecular Dynamics Simulation ; Pharmaceutical chemistry ; Pharmaceutical research ; Principal Component Analysis ; Principal components analysis ; Production processes ; Protein Binding ; Protein Conformation ; Proteins ; Staphylococcus infections ; Tuberculosis</subject><ispartof>PLoS computational biology, 2013-12, Vol.9 (12), p.e1003395-e1003395</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Blachly et al 2013 Blachly et al</rights><rights>2013 Blachly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Blachly PG, de Oliveira CAF, Williams SL, McCammon JA (2013) Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs. PLoS Comput Biol 9(12): e1003395. doi:10.1371/journal.pcbi.1003395</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</citedby><cites>FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24367248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Briggs, James M.</contributor><creatorcontrib>Blachly, Patrick G</creatorcontrib><creatorcontrib>de Oliveira, César A F</creatorcontrib><creatorcontrib>Williams, Sarah L</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.</description><subject>Anti-infective agents</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antimicrobial agents</subject><subject>Bacterial infections</subject><subject>Bacterial Proteins - chemistry</subject><subject>Catalytic Domain</subject><subject>Colleges & universities</subject><subject>Crystal structure</subject><subject>Drug Design</subject><subject>Drug resistance</subject><subject>Hydrogen-ion concentration</subject><subject>Ligands</subject><subject>Malaria</subject><subject>Models, Theoretical</subject><subject>Molecular Dynamics Simulation</subject><subject>Pharmaceutical chemistry</subject><subject>Pharmaceutical research</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Production processes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Staphylococcus infections</subject><subject>Tuberculosis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbF39B6ID3ujFrslmkkxuhFLULhQFtdcxXzNNmU2mSaZYf71n3G3pgjcyhMnHc96cnPNW1UuMVphw_P4qTimoYTUa7VcYIUIEfVQdY0rJkhPaPn4wP6qe5XwFDG0Fe1odrRvC-Lppj6ufF8UP_rcPfa1qexvU1hs11NZlk_xYfAx17OpNHs_qEmvlbe1DXS4dEDduiOPWhTITIcKyVqF4EEhR-1kkTX1-Xj3p1JDdi_1_UV18-vjj9Gx5_vXz5vTkfGmYEGUpGKedMEhYZKxeO2uM4Lo1aM0bTW3j2sZhjVHTaoqxVZ22TjOhjRWGU8vJonq90x2HmOW-OFnihnMBg2IgNjvCRnUlx-S3Kt3KqLz8uxFTL1Uq3gxOCtR0CDHcUMUa3MJlQiPhGHbWccQoaH3Y3zbpLSQLVUhqOBA9PAn-UvbxRpKWtXQ9C7zdC6R4Pblc5NZn44ZBBRenOW-BOLwdOrWo3uzQXkFqPnQRFM2MyxNC4WktIwyo1T8o-KyDjsTgOg_7BwHvDgKAKe5X6dWUs9x8__Yf7JdDttmxYIOck-vuq4KRnJ171xw5O1funQthrx5W9D7ozqrkD7yX6zw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Blachly, Patrick G</creator><creator>de Oliveira, César A F</creator><creator>Williams, Sarah L</creator><creator>McCammon, J Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131201</creationdate><title>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</title><author>Blachly, Patrick G ; de Oliveira, César A F ; Williams, Sarah L ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anti-infective agents</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antimicrobial agents</topic><topic>Bacterial infections</topic><topic>Bacterial Proteins - chemistry</topic><topic>Catalytic Domain</topic><topic>Colleges & universities</topic><topic>Crystal structure</topic><topic>Drug Design</topic><topic>Drug resistance</topic><topic>Hydrogen-ion concentration</topic><topic>Ligands</topic><topic>Malaria</topic><topic>Models, Theoretical</topic><topic>Molecular Dynamics Simulation</topic><topic>Pharmaceutical chemistry</topic><topic>Pharmaceutical research</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Production processes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Staphylococcus infections</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blachly, Patrick G</creatorcontrib><creatorcontrib>de Oliveira, César A F</creatorcontrib><creatorcontrib>Williams, Sarah L</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blachly, Patrick G</au><au>de Oliveira, César A F</au><au>Williams, Sarah L</au><au>McCammon, J Andrew</au><au>Briggs, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>9</volume><issue>12</issue><spage>e1003395</spage><epage>e1003395</epage><pages>e1003395-e1003395</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24367248</pmid><doi>10.1371/journal.pcbi.1003395</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-12, Vol.9 (12), p.e1003395-e1003395 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1477947751 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Anti-infective agents Anti-Infective Agents - chemistry Anti-Infective Agents - pharmacology Antimicrobial agents Bacterial infections Bacterial Proteins - chemistry Catalytic Domain Colleges & universities Crystal structure Drug Design Drug resistance Hydrogen-ion concentration Ligands Malaria Models, Theoretical Molecular Dynamics Simulation Pharmaceutical chemistry Pharmaceutical research Principal Component Analysis Principal components analysis Production processes Protein Binding Protein Conformation Proteins Staphylococcus infections Tuberculosis |
title | Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20a%20dynamical%20description%20of%20IspH%20to%20aid%20in%20the%20development%20of%20novel%20antimicrobial%20drugs&rft.jtitle=PLoS%20computational%20biology&rft.au=Blachly,%20Patrick%20G&rft.date=2013-12-01&rft.volume=9&rft.issue=12&rft.spage=e1003395&rft.epage=e1003395&rft.pages=e1003395-e1003395&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003395&rft_dat=%3Cgale_plos_%3EA357758636%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c699t-9675f9c09d0cdb2edcc97b8c0274b5d4e84e1b1048b511dafbdeb69bcd9c75d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490727424&rft_id=info:pmid/24367248&rft_galeid=A357758636&rfr_iscdi=true |