Loading…

Microbial diversity of Emalahleni mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel

The present study aims firstly at determining the microbial diversity of mine-water collected in Emalahleni, South Africa and secondly isolating and characterizing the most dominant bacterial species found in the mine water in terms of its resistance to both V(5+) and Ni(2+) in a modified wastewater...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-01, Vol.9 (1), p.e86189
Main Authors: Kamika, Ilunga, Momba, Maggie N B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study aims firstly at determining the microbial diversity of mine-water collected in Emalahleni, South Africa and secondly isolating and characterizing the most dominant bacterial species found in the mine water in terms of its resistance to both V(5+) and Ni(2+) in a modified wastewater liquid media. The results revealed a microbial diversity of 17 orders, 27 families and 33 genera were found in the mine-water samples with Marinobacteria (47.02%) and Anabaena (17.66%) being the most abundant genera. Considering their abundance in the mine-water samples, a species of the Marinobacter genera was isolated, identified, and characterised for metal tolerance and removal ability. The MWI-1 isolate (Marinobacter sp. MWI-1 [AB793286]) was found to be closely related to Marinobacter goseongensis at 97% of similarity. The isolate was exposed to various concentrations of Ni(2+) and V(5+) in wastewater liquid media and its tolerance to metals was also assessed. The MWI-1 isolate could tolerate V(5+) and Ni(2+) separately at concentrations (in terms of MIC) up to 13.41 ± 0.56 mM and 5.39 ± 0.5 mM at pH 7, whereas at pH 3, the tolerance limit decrease to 11.45 ± 0.57 mM and 2.67 ± 0.1 mM, respectively. The removal of V(5+) and Ni(2+) in liquid media was noted to gradually decrease with a gradual increase of the test metals. A significant difference (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0086189