Loading…

Near isometric biomass partitioning in forest ecosystems of China

Based on the isometric hypothesis, belowground plant biomass (MB) should scale isometrically with aboveground biomass (MA) and the scaling exponent should not vary with environmental factors. We tested this hypothesis using a large forest biomass database collected in China. Allometric scaling funct...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-01, Vol.9 (1), p.e86550-e86550
Main Authors: Hui, Dafeng, Wang, Jun, Shen, Weijun, Le, Xuan, Ganter, Philip, Ren, Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the isometric hypothesis, belowground plant biomass (MB) should scale isometrically with aboveground biomass (MA) and the scaling exponent should not vary with environmental factors. We tested this hypothesis using a large forest biomass database collected in China. Allometric scaling functions relating MB and MA were developed for the entire database and for different groups based on tree age, diameter at breast height, height, latitude, longitude or elevation. To investigate whether the scaling exponent is independent of these biotic and abiotic factors, we analyzed the relationship between the scaling exponent and these factors. Overall MB was significantly related to MA with a scaling exponent of 0.964. The scaling exponent of the allometric function did not vary with tree age, density, latitude, or longitude, but varied with diameter at breast height, height, and elevation. The mean of the scaling exponent over all groups was 0.986. Among 57 scaling relationships developed, 26 of the scaling exponents were not significantly different from 1. Our results generally support the isometric hypothesis. MB scaled near isometrically with MA and the scaling exponent did not vary with tree age, density, latitude, or longitude, but increased with tree size and elevation. While fitting a single allometric scaling relationship may be adequate, the estimation of MB from MA could be improved with size-specific scaling relationships.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0086550