Loading…
eRF3b, a biomarker for hepatocellular carcinoma, influences cell cycle and phosphoralation status of 4E-BP1
Hepatitis B virus (HBV) infection and its sequelae are now recognized as serious problems globally. Our aime is to screen hepatocellular carcinoma (HCC) from chronic hepatitis B (CHB) and identify the characteristics of proteins involved. We affinity-purified sample serum with weak cation-exchange (...
Saved in:
Published in: | PloS one 2014-01, Vol.9 (1), p.e86371 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hepatitis B virus (HBV) infection and its sequelae are now recognized as serious problems globally. Our aime is to screen hepatocellular carcinoma (HCC) from chronic hepatitis B (CHB) and identify the characteristics of proteins involved.
We affinity-purified sample serum with weak cation-exchange (WCX) magnetic beads and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis to search for potential markers. The 4210 Da protein, which differed substantially between HCC and CHB isolates, was later identified to be eukaryotic peptide chain release factor GTP-binding subunit eRF3b. Further research showed that eRF3b/GSPT2 was positively expressed in liver tissues. GSPT2 mRNA was, however differentially expressed in blood. Compared with normal controls, the relative expression of GSPT2/18s rRNA was higher in CHB patients than in patients with either LC or HCC (P = 0.035 for CHB vs. LC; P = 0.020 for CHB vs. HCC). The data of further research showed that eRF3b/GSPT2 promoted the entrance of the HepG2 cells into the S-phase and that one of the substrates of the mTOR kinase, 4E-BP1, was hyperphosphorylated in eRF3b-overexpressing HepG2 cells.
Overall, the differentially expressed protein eRF3b, which was discovered as a biomarker for HCC, could change the cell cycle and influence the phosphorylation status of 4E-BP1 on Ser65 in HepG2. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0086371 |