Loading…

In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis

The gut microbiota is of crucial importance for the host with considerable metabolic activity. Although great efforts have been made toward characterizing microbial diversity, measuring components' metabolic activity surprisingly hasn't kept pace. Here we combined pyrosequencing of amplifi...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-01, Vol.9 (1), p.e85948-e85948
Main Authors: Shao, Yongqi, Arias-Cordero, Erika, Guo, Huijuan, Bartram, Stefan, Boland, Wilhelm
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The gut microbiota is of crucial importance for the host with considerable metabolic activity. Although great efforts have been made toward characterizing microbial diversity, measuring components' metabolic activity surprisingly hasn't kept pace. Here we combined pyrosequencing of amplified 16S rRNA genes with in vivo stable isotope probing (Pyro-SIP) to unmask metabolically active bacteria in the gut of cotton leafworm (Spodoptera littoralis), a polyphagous insect herbivore that consumes large amounts of plant material in a short time, liberating abundant glucose in the alimentary canal as a most important carbon and energy source for both host and active gut bacteria. With (13)C glucose as the trophic link, Pyro-SIP revealed that a relatively simple but distinctive gut microbiota co-developed with the host, both metabolic activity and composition shifting throughout larval stages. Pantoea, Citrobacter and Clostridium were particularly active in early-instar, likely the core functional populations linked to nutritional upgrading. Enterococcus was the single predominant genus in the community, and it was essentially stable and metabolically active in the larval lifespan. Based on that Enterococci formed biofilm-like layers on the gut epithelium and that the isolated strains showed antimicrobial properties, Enterococcus may be able to establish a colonization resistance effect in the gut against potentially harmful microbes from outside. Not only does this establish the first in-depth inventory of the gut microbiota of a model organism from the mostly phytophagous Lepidoptera, but this pilot study shows that Pyro-SIP can rapidly gain insight into the gut microbiota's metabolic activity with high resolution and high precision.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0085948