Loading…

Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro

Monocytes/macrophages are key players in all phases of physiological and pathological inflammation. To understanding the regulation of macrophage functional differentiation during inflammation, we designed an in vitro model that recapitulates the different phases of the reaction (recruitment, initia...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-02, Vol.9 (2), p.e87680-e87680
Main Authors: Italiani, Paola, Mazza, Emilia M C, Lucchesi, Davide, Cifola, Ingrid, Gemelli, Claudia, Grande, Alexis, Battaglia, Cristina, Bicciato, Silvio, Boraschi, Diana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monocytes/macrophages are key players in all phases of physiological and pathological inflammation. To understanding the regulation of macrophage functional differentiation during inflammation, we designed an in vitro model that recapitulates the different phases of the reaction (recruitment, initiation, development, and resolution), based on human primary blood monocytes exposed to sequential changes in microenvironmental conditions. All reaction phases were profiled by transcriptomic microarray analysis. Distinct clusters of genes were identified that are differentially regulated through the different phases of inflammation. The gene sets defined by GSEA analysis revealed that the inflammatory phase was enriched in inflammatory pathways, while the resolution phase comprised pathways related to metabolism and gene rearrangement. By comparing gene clusters differentially expressed in monocytes vs. M1 and vs. M2 macrophages extracted from an in-house created meta-database, it was shown that cells in the model resemble M1 during the inflammatory phase and M2 during resolution. The validation of inflammatory and transcriptional factors by qPCR and ELISA confirmed the transcriptomic profiles in the different phases of inflammation. The accurate description of the development of the human inflammatory reaction provided by this in vitro kinetic model can help in identifying regulatory mechanisms in physiological conditions and during pathological derangements.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0087680