Loading…
Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats
Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present stu...
Saved in:
Published in: | PloS one 2014-02, Vol.9 (2), p.e88833-e88833 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93 |
container_end_page | e88833 |
container_issue | 2 |
container_start_page | e88833 |
container_title | PloS one |
container_volume | 9 |
creator | Ziemlińska, Ewelina Kügler, Sebastian Schachner, Melitta Wewiór, Iwona Czarkowska-Bauch, Julita Skup, Małgorzata |
description | Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability. |
doi_str_mv | 10.1371/journal.pone.0088833 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498237211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478803566</galeid><doaj_id>oai_doaj_org_article_39bb8e0aef51419d9dadadf40df6d38f</doaj_id><sourcerecordid>A478803566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93</originalsourceid><addsrcrecordid>eNqNk9tuEzEQhlcIREvhDRBYQkJwkeDTnm4qlUIhUkUkTreW1zubOHjXi-0tCe_B--I02ypBvUC-sDX-5p-DPUnylOApYTl5s7KD66SZ9raDKcZFUTB2LzkmJaOTjGJ2f-98lDzyfoVxyoose5gcUZ6mhOT0OPkzvwIH696B99p2yDbo7btPF0h3yoH04BGslQ6y0kaHzfY6LAGZoa2kQ77XMQPUQfhl3Q8kuxoZkLVHwSJnq8EHBNKZDTJW2dYG65ADZWPETQyAoq03ECACOyX9G2rkZPCPkweNNB6ejPtJ8u3i_dfzj5PL-YfZ-dnlROVpESYpZ4qlVZnmhNOs5pzSKlab04aqvMobFRuQ5oApVoVqcqagopBz4JxJqeqSnSTPd7q9sV6MHfWC8LKgUYaQSMx2RG3lSvROt9JthJVaXBusWwjpglYGBCurqgAsoUkJJ2Vd1jKuhuO6yWpWNFHrdIw2VC3UCrrgpDkQPbzp9FIs7FVUpinJeBR4NQo4-3MAH0SrvQJjZAd2iHmnGGcFo9foi3_Qu6sbqYWMBeiusTGu2oqKM54XBWZplkVqegcVVw2tVvH7NTraDxxeHzhEJsA6LOTgvZh9-fz_7Pz7Iftyj12CNGHprRlC_Ln-EOQ7UDnrvYPmtskEi-303HRDbKdHjNMT3Z7tP9Ct0824sL-_3Rhe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498237211</pqid></control><display><type>article</type><title>Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ziemlińska, Ewelina ; Kügler, Sebastian ; Schachner, Melitta ; Wewiór, Iwona ; Czarkowska-Bauch, Julita ; Skup, Małgorzata</creator><contributor>Hochman, Shawn</contributor><creatorcontrib>Ziemlińska, Ewelina ; Kügler, Sebastian ; Schachner, Melitta ; Wewiór, Iwona ; Czarkowska-Bauch, Julita ; Skup, Małgorzata ; Hochman, Shawn</creatorcontrib><description>Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0088833</identifier><identifier>PMID: 24551172</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Animals ; Axons ; Biology ; Body weight ; Brain ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - genetics ; Brain-Derived Neurotrophic Factor - therapeutic use ; Data processing ; Dependovirus - metabolism ; Excitability ; GABA ; gamma-Aminobutyric Acid - metabolism ; Gene expression ; Genetic Vectors - metabolism ; Glutamate Decarboxylase - genetics ; Glutamate Decarboxylase - metabolism ; Glutamatergic transmission ; Glycine - metabolism ; Green Fluorescent Proteins - metabolism ; K Cl- Cotransporters ; Lesions ; Lumbar Vertebrae - enzymology ; Lumbar Vertebrae - pathology ; Lumbar Vertebrae - physiopathology ; Male ; Medicine ; Motor Activity ; Nervous system ; Neural networks ; Neurons ; Neurosciences ; Neurotransmission ; Potassium ; Potassium-chloride cotransporter ; Range of Motion, Articular ; Rats ; Rats, Wistar ; Recovery ; Recovery (Medical) ; Recovery of Function ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy ; Symporters - metabolism ; Therapeutic applications ; Thoracic Vertebrae - pathology ; Thoracic Vertebrae - physiopathology ; Transduction, Genetic ; Vesicular Glutamate Transport Proteins - genetics ; Vesicular Glutamate Transport Proteins - metabolism ; Walking</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e88833-e88833</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Ziemlińska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Ziemlińska et al 2014 Ziemlińska et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93</citedby><cites>FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1498237211/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1498237211?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24551172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hochman, Shawn</contributor><creatorcontrib>Ziemlińska, Ewelina</creatorcontrib><creatorcontrib>Kügler, Sebastian</creatorcontrib><creatorcontrib>Schachner, Melitta</creatorcontrib><creatorcontrib>Wewiór, Iwona</creatorcontrib><creatorcontrib>Czarkowska-Bauch, Julita</creatorcontrib><creatorcontrib>Skup, Małgorzata</creatorcontrib><title>Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Axons</subject><subject>Biology</subject><subject>Body weight</subject><subject>Brain</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Brain-Derived Neurotrophic Factor - therapeutic use</subject><subject>Data processing</subject><subject>Dependovirus - metabolism</subject><subject>Excitability</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene expression</subject><subject>Genetic Vectors - metabolism</subject><subject>Glutamate Decarboxylase - genetics</subject><subject>Glutamate Decarboxylase - metabolism</subject><subject>Glutamatergic transmission</subject><subject>Glycine - metabolism</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>K Cl- Cotransporters</subject><subject>Lesions</subject><subject>Lumbar Vertebrae - enzymology</subject><subject>Lumbar Vertebrae - pathology</subject><subject>Lumbar Vertebrae - physiopathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Motor Activity</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Potassium</subject><subject>Potassium-chloride cotransporter</subject><subject>Range of Motion, Articular</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Recovery</subject><subject>Recovery (Medical)</subject><subject>Recovery of Function</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Symporters - metabolism</subject><subject>Therapeutic applications</subject><subject>Thoracic Vertebrae - pathology</subject><subject>Thoracic Vertebrae - physiopathology</subject><subject>Transduction, Genetic</subject><subject>Vesicular Glutamate Transport Proteins - genetics</subject><subject>Vesicular Glutamate Transport Proteins - metabolism</subject><subject>Walking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tuEzEQhlcIREvhDRBYQkJwkeDTnm4qlUIhUkUkTreW1zubOHjXi-0tCe_B--I02ypBvUC-sDX-5p-DPUnylOApYTl5s7KD66SZ9raDKcZFUTB2LzkmJaOTjGJ2f-98lDzyfoVxyoose5gcUZ6mhOT0OPkzvwIH696B99p2yDbo7btPF0h3yoH04BGslQ6y0kaHzfY6LAGZoa2kQ77XMQPUQfhl3Q8kuxoZkLVHwSJnq8EHBNKZDTJW2dYG65ADZWPETQyAoq03ECACOyX9G2rkZPCPkweNNB6ejPtJ8u3i_dfzj5PL-YfZ-dnlROVpESYpZ4qlVZnmhNOs5pzSKlab04aqvMobFRuQ5oApVoVqcqagopBz4JxJqeqSnSTPd7q9sV6MHfWC8LKgUYaQSMx2RG3lSvROt9JthJVaXBusWwjpglYGBCurqgAsoUkJJ2Vd1jKuhuO6yWpWNFHrdIw2VC3UCrrgpDkQPbzp9FIs7FVUpinJeBR4NQo4-3MAH0SrvQJjZAd2iHmnGGcFo9foi3_Qu6sbqYWMBeiusTGu2oqKM54XBWZplkVqegcVVw2tVvH7NTraDxxeHzhEJsA6LOTgvZh9-fz_7Pz7Iftyj12CNGHprRlC_Ln-EOQ7UDnrvYPmtskEi-303HRDbKdHjNMT3Z7tP9Ct0824sL-_3Rhe</recordid><startdate>20140214</startdate><enddate>20140214</enddate><creator>Ziemlińska, Ewelina</creator><creator>Kügler, Sebastian</creator><creator>Schachner, Melitta</creator><creator>Wewiór, Iwona</creator><creator>Czarkowska-Bauch, Julita</creator><creator>Skup, Małgorzata</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140214</creationdate><title>Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats</title><author>Ziemlińska, Ewelina ; Kügler, Sebastian ; Schachner, Melitta ; Wewiór, Iwona ; Czarkowska-Bauch, Julita ; Skup, Małgorzata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Axons</topic><topic>Biology</topic><topic>Body weight</topic><topic>Brain</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Brain-Derived Neurotrophic Factor - therapeutic use</topic><topic>Data processing</topic><topic>Dependovirus - metabolism</topic><topic>Excitability</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene expression</topic><topic>Genetic Vectors - metabolism</topic><topic>Glutamate Decarboxylase - genetics</topic><topic>Glutamate Decarboxylase - metabolism</topic><topic>Glutamatergic transmission</topic><topic>Glycine - metabolism</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>K Cl- Cotransporters</topic><topic>Lesions</topic><topic>Lumbar Vertebrae - enzymology</topic><topic>Lumbar Vertebrae - pathology</topic><topic>Lumbar Vertebrae - physiopathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Motor Activity</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Potassium</topic><topic>Potassium-chloride cotransporter</topic><topic>Range of Motion, Articular</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Recovery</topic><topic>Recovery (Medical)</topic><topic>Recovery of Function</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Symporters - metabolism</topic><topic>Therapeutic applications</topic><topic>Thoracic Vertebrae - pathology</topic><topic>Thoracic Vertebrae - physiopathology</topic><topic>Transduction, Genetic</topic><topic>Vesicular Glutamate Transport Proteins - genetics</topic><topic>Vesicular Glutamate Transport Proteins - metabolism</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziemlińska, Ewelina</creatorcontrib><creatorcontrib>Kügler, Sebastian</creatorcontrib><creatorcontrib>Schachner, Melitta</creatorcontrib><creatorcontrib>Wewiór, Iwona</creatorcontrib><creatorcontrib>Czarkowska-Bauch, Julita</creatorcontrib><creatorcontrib>Skup, Małgorzata</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziemlińska, Ewelina</au><au>Kügler, Sebastian</au><au>Schachner, Melitta</au><au>Wewiór, Iwona</au><au>Czarkowska-Bauch, Julita</au><au>Skup, Małgorzata</au><au>Hochman, Shawn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-14</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e88833</spage><epage>e88833</epage><pages>e88833-e88833</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24551172</pmid><doi>10.1371/journal.pone.0088833</doi><tpages>e88833</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-02, Vol.9 (2), p.e88833-e88833 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1498237211 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Amino acids Animals Axons Biology Body weight Brain Brain-derived neurotrophic factor Brain-Derived Neurotrophic Factor - genetics Brain-Derived Neurotrophic Factor - therapeutic use Data processing Dependovirus - metabolism Excitability GABA gamma-Aminobutyric Acid - metabolism Gene expression Genetic Vectors - metabolism Glutamate Decarboxylase - genetics Glutamate Decarboxylase - metabolism Glutamatergic transmission Glycine - metabolism Green Fluorescent Proteins - metabolism K Cl- Cotransporters Lesions Lumbar Vertebrae - enzymology Lumbar Vertebrae - pathology Lumbar Vertebrae - physiopathology Male Medicine Motor Activity Nervous system Neural networks Neurons Neurosciences Neurotransmission Potassium Potassium-chloride cotransporter Range of Motion, Articular Rats Rats, Wistar Recovery Recovery (Medical) Recovery of Function RNA, Messenger - genetics RNA, Messenger - metabolism Rodents Spinal cord injuries Spinal Cord Injuries - metabolism Spinal Cord Injuries - physiopathology Spinal Cord Injuries - therapy Symporters - metabolism Therapeutic applications Thoracic Vertebrae - pathology Thoracic Vertebrae - physiopathology Transduction, Genetic Vesicular Glutamate Transport Proteins - genetics Vesicular Glutamate Transport Proteins - metabolism Walking |
title | Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20BDNF%20increases%20excitability%20of%20the%20lumbar%20spinal%20network%20and%20leads%20to%20robust%20early%20locomotor%20recovery%20in%20completely%20spinalized%20rats&rft.jtitle=PloS%20one&rft.au=Ziemli%C5%84ska,%20Ewelina&rft.date=2014-02-14&rft.volume=9&rft.issue=2&rft.spage=e88833&rft.epage=e88833&rft.pages=e88833-e88833&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0088833&rft_dat=%3Cgale_plos_%3EA478803566%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-543c35b9571426d4422b20372f2c7b7fc19357e020c8cf73ceb2e74e443aacd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1498237211&rft_id=info:pmid/24551172&rft_galeid=A478803566&rfr_iscdi=true |