Loading…

Lycium barbarum polysaccharide prevents focal cerebral ischemic injury by inhibiting neuronal apoptosis in mice

To investigate the neuroprotective effect of Lycium barbarum polysaccharide (LBP) on focal cerebral ischemic injury in mice and to explore its possible mechanism. Male ICR mice were used to make the model of middle cerebral artery occlusion (MCAO) after intragastric administration with LBP (10, 20 a...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-03, Vol.9 (3), p.e90780
Main Authors: Wang, Tengfei, Li, Yuxiang, Wang, Yongsheng, Zhou, Ru, Ma, Lin, Hao, Yinju, Jin, Shaoju, Du, Juan, Zhao, Chengjun, Sun, Tao, Yu, Jianqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the neuroprotective effect of Lycium barbarum polysaccharide (LBP) on focal cerebral ischemic injury in mice and to explore its possible mechanism. Male ICR mice were used to make the model of middle cerebral artery occlusion (MCAO) after intragastric administration with LBP (10, 20 and 40 mg/kg) and Nimodipine (0.4 mg/kg) for seven successive days. After 24 h of reperfusion, neurological scores were estimated and infarct volumes were measured by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Morphological changes in ischemic brains were performed for hematoxylin-eosin (HE) staining. The number of apoptotic neurons was detected by TUNEL staining. The Bax, Bcl-2 protein expression and CytC, Caspase-3, -9 and cleaved PARP-1 activation were investigated by immunofluorescence and western-blot analysis. LBP (10, 20 and 40 mg/kg) treatment groups significantly reduced infract volume and neurological deficit scores. LBP also relieved neuronal morphological damage and attenuated the neuronal apoptosis. LBP at the dose of 40 mg/kg significantly suppressed overexpression of Bax, CytC, Caspase-3, -9 and cleaved PARP-1, and inhibited the reduction of Bcl-2 expression. Based on these findings we propose that LBP protects against focal cerebral ischemic injury by attenuating the mitochondrial apoptosis pathway.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0090780