Loading…
High precision prediction of functional sites in protein structures
We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods...
Saved in:
Published in: | PloS one 2014-03, Vol.9 (3), p.e91240-e91240 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3 |
container_end_page | e91240 |
container_issue | 3 |
container_start_page | e91240 |
container_title | PloS one |
container_volume | 9 |
creator | Buturovic, Ljubomir Wong, Mike Tang, Grace W Altman, Russ B Petkovic, Dragutin |
description | We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. |
doi_str_mv | 10.1371/journal.pone.0091240 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1507595385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478763015</galeid><doaj_id>oai_doaj_org_article_bce390ce38974c6ab2da3062393b67f4</doaj_id><sourcerecordid>A478763015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gWBNGL1nxnciMsRd3CwoJftyGTZNqUdNJNMqL_3kw7u3RkLySQHJLnvMk5eavqJQQLiDn8sA197JRf7ENnFwAIiAh4VJ1DgdGcIYAfn8Rn1bOUtgBQXDP2tDpDhGHEADyvllduvZnto9UuudANkXE6D2FoZ23fHWLlZ8llm2ZuIEK2ZU059jr30abn1ZNW-WRfjOtF9ePzp-_Lq_n1zZfV8vJ6rplAeY4woabGjQGQUYC0AbSlnBrY1oYLwYFpmwZoSglUinJoGm0Q4TW1RiPIGnxRvT7q7n1Icqw_SUgBp6KURguxOhImqK3cR7dT8Y8MysnDRohrqWJ22lvZaIsFKFMtONFMNcgoDBjCAjeMt6RofRxv65tdeYLtclR-Ijo96dxGrsMviQUlTIgi8G4UiOG2tynLnUvaeq86G_rDu2uCKESsoG_-QR-ubqTWqhTgujaUe_UgKi9LnzjDAA7U4gGqDGN3TheztK7sTxLeTxIKk-3vvFZ9SnL17ev_szc_p-zbE3Zjlc-bFHw_GCpNQXIEdQwpRdveNxkCOXj9rhty8LocvV7SXp1-0H3SnbnxXz6R-Lc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507595385</pqid></control><display><type>article</type><title>High precision prediction of functional sites in protein structures</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Buturovic, Ljubomir ; Wong, Mike ; Tang, Grace W ; Altman, Russ B ; Petkovic, Dragutin</creator><contributor>Friedberg, Iddo</contributor><creatorcontrib>Buturovic, Ljubomir ; Wong, Mike ; Tang, Grace W ; Altman, Russ B ; Petkovic, Dragutin ; Friedberg, Iddo</creatorcontrib><description>We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0091240</identifier><identifier>PMID: 24632601</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Biology ; Computational Biology - methods ; Computer Science ; Databases, Protein ; Mathematics ; Protein Conformation ; Proteins - chemistry ; Software</subject><ispartof>PloS one, 2014-03, Vol.9 (3), p.e91240-e91240</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Buturovic et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Buturovic et al 2014 Buturovic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3</citedby><cites>FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1507595385/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1507595385?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24632601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Friedberg, Iddo</contributor><creatorcontrib>Buturovic, Ljubomir</creatorcontrib><creatorcontrib>Wong, Mike</creatorcontrib><creatorcontrib>Tang, Grace W</creatorcontrib><creatorcontrib>Altman, Russ B</creatorcontrib><creatorcontrib>Petkovic, Dragutin</creatorcontrib><title>High precision prediction of functional sites in protein structures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta.</description><subject>Amino acids</subject><subject>Biology</subject><subject>Computational Biology - methods</subject><subject>Computer Science</subject><subject>Databases, Protein</subject><subject>Mathematics</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Software</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gWBNGL1nxnciMsRd3CwoJftyGTZNqUdNJNMqL_3kw7u3RkLySQHJLnvMk5eavqJQQLiDn8sA197JRf7ENnFwAIiAh4VJ1DgdGcIYAfn8Rn1bOUtgBQXDP2tDpDhGHEADyvllduvZnto9UuudANkXE6D2FoZ23fHWLlZ8llm2ZuIEK2ZU059jr30abn1ZNW-WRfjOtF9ePzp-_Lq_n1zZfV8vJ6rplAeY4woabGjQGQUYC0AbSlnBrY1oYLwYFpmwZoSglUinJoGm0Q4TW1RiPIGnxRvT7q7n1Icqw_SUgBp6KURguxOhImqK3cR7dT8Y8MysnDRohrqWJ22lvZaIsFKFMtONFMNcgoDBjCAjeMt6RofRxv65tdeYLtclR-Ijo96dxGrsMviQUlTIgi8G4UiOG2tynLnUvaeq86G_rDu2uCKESsoG_-QR-ubqTWqhTgujaUe_UgKi9LnzjDAA7U4gGqDGN3TheztK7sTxLeTxIKk-3vvFZ9SnL17ev_szc_p-zbE3Zjlc-bFHw_GCpNQXIEdQwpRdveNxkCOXj9rhty8LocvV7SXp1-0H3SnbnxXz6R-Lc</recordid><startdate>20140314</startdate><enddate>20140314</enddate><creator>Buturovic, Ljubomir</creator><creator>Wong, Mike</creator><creator>Tang, Grace W</creator><creator>Altman, Russ B</creator><creator>Petkovic, Dragutin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140314</creationdate><title>High precision prediction of functional sites in protein structures</title><author>Buturovic, Ljubomir ; Wong, Mike ; Tang, Grace W ; Altman, Russ B ; Petkovic, Dragutin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Biology</topic><topic>Computational Biology - methods</topic><topic>Computer Science</topic><topic>Databases, Protein</topic><topic>Mathematics</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buturovic, Ljubomir</creatorcontrib><creatorcontrib>Wong, Mike</creatorcontrib><creatorcontrib>Tang, Grace W</creatorcontrib><creatorcontrib>Altman, Russ B</creatorcontrib><creatorcontrib>Petkovic, Dragutin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buturovic, Ljubomir</au><au>Wong, Mike</au><au>Tang, Grace W</au><au>Altman, Russ B</au><au>Petkovic, Dragutin</au><au>Friedberg, Iddo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High precision prediction of functional sites in protein structures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-03-14</date><risdate>2014</risdate><volume>9</volume><issue>3</issue><spage>e91240</spage><epage>e91240</epage><pages>e91240-e91240</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24632601</pmid><doi>10.1371/journal.pone.0091240</doi><tpages>e91240</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-03, Vol.9 (3), p.e91240-e91240 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1507595385 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amino acids Biology Computational Biology - methods Computer Science Databases, Protein Mathematics Protein Conformation Proteins - chemistry Software |
title | High precision prediction of functional sites in protein structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20precision%20prediction%20of%20functional%20sites%20in%20protein%20structures&rft.jtitle=PloS%20one&rft.au=Buturovic,%20Ljubomir&rft.date=2014-03-14&rft.volume=9&rft.issue=3&rft.spage=e91240&rft.epage=e91240&rft.pages=e91240-e91240&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0091240&rft_dat=%3Cgale_plos_%3EA478763015%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-2345d83bd016502cd05f575d1f8d79970dfbb0c5541aa571dbcd24785edc216b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507595385&rft_id=info:pmid/24632601&rft_galeid=A478763015&rfr_iscdi=true |