Loading…

Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice

CFTR (cystic fibrosis transmembrane conductance regulator) is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del) or inhibition of CFTR in mice led to more severe thrombocytopenia, a...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-03, Vol.9 (3), p.e93003-e93003
Main Authors: Wu, Haiya, Yang, Jun, Su, Emily M, Li, Ling, Zhao, Caiqi, Yang, Xi, Gao, Zhaowei, Pan, Mengyao, Sun, Peiyu, Sun, Wei, Jiang, Yiyi, Su, Xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CFTR (cystic fibrosis transmembrane conductance regulator) is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del) or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2) or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage) during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1) or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF) levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase) inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0093003