Loading…
SSVEP extraction based on the similarity of background EEG
Steady-state Visual Evoked Potential (SSVEP) outperforms the other types of ERPs for Brain-computer Interface (BCI), and thus it is widely employed. In order to apply SSVEP-based BCI to real life situations, it is important to improve the accuracy and transfer rate of the system. Aimed at this targe...
Saved in:
Published in: | PloS one 2014-04, Vol.9 (4), p.e93884-e93884 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Steady-state Visual Evoked Potential (SSVEP) outperforms the other types of ERPs for Brain-computer Interface (BCI), and thus it is widely employed. In order to apply SSVEP-based BCI to real life situations, it is important to improve the accuracy and transfer rate of the system. Aimed at this target, many SSVEP extraction methods have been proposed. All these methods are based directly on the properties of SSVEP, such as power and phase. In this study, we first filtered out the target frequencies from the original EEG to get a new signal and then computed the similarity between the original EEG and the new signal. Based on this similarity, SSVEP in the original EEG can be identified. This method is referred to as SOB (Similarity of Background). The SOB method is used to detect SSVEP in 1s-length and 3s-length EEG segments respectively. The accuracy of detection is compared with its peers computed by the widely-used Power Spectrum (PS) method and the Canonical Coefficient (CC) method. The comparison results illustrate that the SOB method can lead to a higher accuracy than the PS method and CC method when detecting a short period SSVEP signal. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0093884 |