Loading…
Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis...
Saved in:
Published in: | PloS one 2014-04, Vol.9 (4), p.e95628-e95628 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513 |
---|---|
cites | cdi_FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513 |
container_end_page | e95628 |
container_issue | 4 |
container_start_page | e95628 |
container_title | PloS one |
container_volume | 9 |
creator | Calero, Raul Morchon, Esther Johnsen, John Inge Serrano, Rosario |
description | Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients. |
doi_str_mv | 10.1371/journal.pone.0095628 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1518680267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A375584941</galeid><doaj_id>oai_doaj_org_article_48d5eb942beb44bd97d8076f61883efc</doaj_id><sourcerecordid>A375584941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513</originalsourceid><addsrcrecordid>eNqNk1-L1DAUxYso7rr6DUQLgujDjG3SNMnLwjL4Z2B1wVXBp5Amt23GTlKT1tVvbzvTWaayD5KHhtvfOUlOcqPoaZosU0zTNxvXeyubZessLJOEkxyxe9FpyjFa5CjB94_mJ9GjEDZJQjDL84fRCcoo4RRnp1Fx3VvTGWuKOPRt6yGE2ELvXdHI0LmtjCvvbro67mrv-qqONVReatkZZ2NXxh-_rz7F0urY2NoU5lCWtjKuAgvBhMfRg1I2AZ5M37Po67u3X1YfFpdX79eri8uFoiztFmXJEZWySHLghVKQK6RSKXWmERBQknEEFHMJGmiOGWiNeZoprQgDiUiKz6Lne9-2cUFM8QSRkpTlLEE5HYj1ntBObkTrzVb6P8JJI3YF5yshfWdUAyJjmkDBM1RAkWWF5lSzhOZlnjKGoVSD12LvFW6g7YuZ21T6McxAEIQShAf-fNpdX2xBK7Cdl81MNv9jTS0q90tgzmlGR4NXk4F3P3sIndiaoKBppAXX787JEWF4t9aLf9C705ioSg4HNrZ0w7pqNBUXmBLCMp6NqS7voIahYWvU8PZKM9RngtczwcB08LurZB-CWF9__n_26tucfXnE1iCbrg6u6ccnF-ZgtgeVdyF4KG9DThMxts4hDTG2jphaZ5A9O76gW9GhV_BfVmYXRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518680267</pqid></control><display><type>article</type><title>Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Calero, Raul ; Morchon, Esther ; Johnsen, John Inge ; Serrano, Rosario</creator><contributor>Castresana, Javier S.</contributor><creatorcontrib>Calero, Raul ; Morchon, Esther ; Johnsen, John Inge ; Serrano, Rosario ; Castresana, Javier S.</creatorcontrib><description>Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0095628</identifier><identifier>PMID: 24759734</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Amplification ; Angiogenesis ; Animals ; Anticancer properties ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Cancer therapies ; Cell culture ; Cell cycle ; Cell Cycle - drug effects ; Cell growth ; Cell Line ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Chemotherapy ; Children ; Children & youth ; Childrens health ; Cyclin-dependent kinases ; Drug therapy ; Female ; Humans ; Hypoxia ; Indoles - therapeutic use ; Inhibition ; Inhibitor drugs ; Kinases ; Medical prognosis ; Medical research ; Medicine and Health Sciences ; Mice ; Mice, Nude ; N-Myc Proto-Oncogene Protein ; Neovascularization ; Neovascularization, Pathologic ; Neuroblastoma ; Neuroblastoma - drug therapy ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Neuroblastoma cells ; Neuroblasts ; Neurological research ; Nuclear Proteins - metabolism ; Oncogene Proteins - metabolism ; Pharmacology, Experimental ; Protein-tyrosine kinase receptors ; Pyrroles - therapeutic use ; Reverse Transcriptase Polymerase Chain Reaction ; Risk ; Secretion ; Signaling ; Sympathetic nervous system ; Targeted cancer therapy ; Tumors ; Tyrosine ; Vascular endothelial growth factor ; Xenografts</subject><ispartof>PloS one, 2014-04, Vol.9 (4), p.e95628-e95628</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Calero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Calero et al 2014 Calero et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513</citedby><cites>FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1518680267/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1518680267?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24759734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:128872634$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Castresana, Javier S.</contributor><creatorcontrib>Calero, Raul</creatorcontrib><creatorcontrib>Morchon, Esther</creatorcontrib><creatorcontrib>Johnsen, John Inge</creatorcontrib><creatorcontrib>Serrano, Rosario</creatorcontrib><title>Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Amplification</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cancer therapies</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Chemotherapy</subject><subject>Children</subject><subject>Children & youth</subject><subject>Childrens health</subject><subject>Cyclin-dependent kinases</subject><subject>Drug therapy</subject><subject>Female</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Indoles - therapeutic use</subject><subject>Inhibition</subject><subject>Inhibitor drugs</subject><subject>Kinases</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>N-Myc Proto-Oncogene Protein</subject><subject>Neovascularization</subject><subject>Neovascularization, Pathologic</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - drug therapy</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroblastoma cells</subject><subject>Neuroblasts</subject><subject>Neurological research</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oncogene Proteins - metabolism</subject><subject>Pharmacology, Experimental</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Pyrroles - therapeutic use</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Risk</subject><subject>Secretion</subject><subject>Signaling</subject><subject>Sympathetic nervous system</subject><subject>Targeted cancer therapy</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Vascular endothelial growth factor</subject><subject>Xenografts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1-L1DAUxYso7rr6DUQLgujDjG3SNMnLwjL4Z2B1wVXBp5Amt23GTlKT1tVvbzvTWaayD5KHhtvfOUlOcqPoaZosU0zTNxvXeyubZessLJOEkxyxe9FpyjFa5CjB94_mJ9GjEDZJQjDL84fRCcoo4RRnp1Fx3VvTGWuKOPRt6yGE2ELvXdHI0LmtjCvvbro67mrv-qqONVReatkZZ2NXxh-_rz7F0urY2NoU5lCWtjKuAgvBhMfRg1I2AZ5M37Po67u3X1YfFpdX79eri8uFoiztFmXJEZWySHLghVKQK6RSKXWmERBQknEEFHMJGmiOGWiNeZoprQgDiUiKz6Lne9-2cUFM8QSRkpTlLEE5HYj1ntBObkTrzVb6P8JJI3YF5yshfWdUAyJjmkDBM1RAkWWF5lSzhOZlnjKGoVSD12LvFW6g7YuZ21T6McxAEIQShAf-fNpdX2xBK7Cdl81MNv9jTS0q90tgzmlGR4NXk4F3P3sIndiaoKBppAXX787JEWF4t9aLf9C705ioSg4HNrZ0w7pqNBUXmBLCMp6NqS7voIahYWvU8PZKM9RngtczwcB08LurZB-CWF9__n_26tucfXnE1iCbrg6u6ccnF-ZgtgeVdyF4KG9DThMxts4hDTG2jphaZ5A9O76gW9GhV_BfVmYXRA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Calero, Raul</creator><creator>Morchon, Esther</creator><creator>Johnsen, John Inge</creator><creator>Serrano, Rosario</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20140401</creationdate><title>Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis</title><author>Calero, Raul ; Morchon, Esther ; Johnsen, John Inge ; Serrano, Rosario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Amplification</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cancer therapies</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Chemotherapy</topic><topic>Children</topic><topic>Children & youth</topic><topic>Childrens health</topic><topic>Cyclin-dependent kinases</topic><topic>Drug therapy</topic><topic>Female</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Indoles - therapeutic use</topic><topic>Inhibition</topic><topic>Inhibitor drugs</topic><topic>Kinases</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>N-Myc Proto-Oncogene Protein</topic><topic>Neovascularization</topic><topic>Neovascularization, Pathologic</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - drug therapy</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroblastoma cells</topic><topic>Neuroblasts</topic><topic>Neurological research</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oncogene Proteins - metabolism</topic><topic>Pharmacology, Experimental</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Pyrroles - therapeutic use</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Risk</topic><topic>Secretion</topic><topic>Signaling</topic><topic>Sympathetic nervous system</topic><topic>Targeted cancer therapy</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Vascular endothelial growth factor</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calero, Raul</creatorcontrib><creatorcontrib>Morchon, Esther</creatorcontrib><creatorcontrib>Johnsen, John Inge</creatorcontrib><creatorcontrib>Serrano, Rosario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calero, Raul</au><au>Morchon, Esther</au><au>Johnsen, John Inge</au><au>Serrano, Rosario</au><au>Castresana, Javier S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>9</volume><issue>4</issue><spage>e95628</spage><epage>e95628</epage><pages>e95628-e95628</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24759734</pmid><doi>10.1371/journal.pone.0095628</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-04, Vol.9 (4), p.e95628-e95628 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1518680267 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Amplification Angiogenesis Animals Anticancer properties Antitumor activity Apoptosis Apoptosis - drug effects Cancer therapies Cell culture Cell cycle Cell Cycle - drug effects Cell growth Cell Line Cell Line, Tumor Cell Proliferation - drug effects Cell Survival - drug effects Chemotherapy Children Children & youth Childrens health Cyclin-dependent kinases Drug therapy Female Humans Hypoxia Indoles - therapeutic use Inhibition Inhibitor drugs Kinases Medical prognosis Medical research Medicine and Health Sciences Mice Mice, Nude N-Myc Proto-Oncogene Protein Neovascularization Neovascularization, Pathologic Neuroblastoma Neuroblastoma - drug therapy Neuroblastoma - metabolism Neuroblastoma - pathology Neuroblastoma cells Neuroblasts Neurological research Nuclear Proteins - metabolism Oncogene Proteins - metabolism Pharmacology, Experimental Protein-tyrosine kinase receptors Pyrroles - therapeutic use Reverse Transcriptase Polymerase Chain Reaction Risk Secretion Signaling Sympathetic nervous system Targeted cancer therapy Tumors Tyrosine Vascular endothelial growth factor Xenografts |
title | Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sunitinib%20suppress%20neuroblastoma%20growth%20through%20degradation%20of%20MYCN%20and%20inhibition%20of%20angiogenesis&rft.jtitle=PloS%20one&rft.au=Calero,%20Raul&rft.date=2014-04-01&rft.volume=9&rft.issue=4&rft.spage=e95628&rft.epage=e95628&rft.pages=e95628-e95628&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0095628&rft_dat=%3Cgale_plos_%3EA375584941%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c781t-ff927aab06e9bcce6c2c1aad4d2e5eca892e739aede7638edd3914cdc58ea2513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1518680267&rft_id=info:pmid/24759734&rft_galeid=A375584941&rfr_iscdi=true |