Loading…

Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum

Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabino...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-05, Vol.9 (5), p.e97148-e97148
Main Authors: Carel, Clément, Nukdee, Kanjana, Cantaloube, Sylvain, Bonne, Mélanie, Diagne, Cheikh T, Laval, Françoise, Daffé, Mamadou, Zerbib, Didier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373
cites cdi_FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373
container_end_page e97148
container_issue 5
container_start_page e97148
container_title PloS one
container_volume 9
creator Carel, Clément
Nukdee, Kanjana
Cantaloube, Sylvain
Bonne, Mélanie
Diagne, Cheikh T
Laval, Françoise
Daffé, Mamadou
Zerbib, Didier
description Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles' heel of the bacillus at all its growing stages.
doi_str_mv 10.1371/journal.pone.0097148
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1522948440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418634037</galeid><doaj_id>oai_doaj_org_article_d2e9a324697f4c7d8ab6a7e53528a022</doaj_id><sourcerecordid>A418634037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISF6sUt8iO3cIK0qoJWKKnG6tRzH2XXl2KntLCzPwEPjdLdVt-oFykXsyff_nhlniuIlLOcQM_j-0o_BSTsfvNPzsqwZJPxRcQhrjGYUlfjxnfVB8SzGy7KsMKf0aXGACIcMMXJY_P2yUb6RKulgxh6ksdFBjdZHE8EQfNLGRWDc2tu1bvMC9Jm3RgGpTAvixqWVnljpWpCCdHHwIQHrlbTmjwbtxsne5I3dgORBhoG3LVgG_8u4JRi81dfSqIc09s-LJ520Ub_YvY-KH58-fj85nZ1ffD47WZzPFEM0zRBVuOtIiRClrOkayjrEGceQk4rXnHJCGqUrJKFuKIGqaxrFFMcYUkgoZvioeL31HXKhYtfIKGCFUE2yuszE2ZZovbwUQzC9DBvhpRHXAR-WQoZklNWiRbqWGBFas44o1nLZUMl0hSvEZc4xe33YnTY2vW6VdrlRds90_4szK7H0a0FKSBGj2eB4a7C6JztdnIspljlWQ8jXMLPvdocFfzXqmERvotLWSqf9eF0jgZRX1ZTXm3vow53YUUuZizWu8zlHNZmKBYGc4sxMHZ0_QOWn1fn68x_amRzfExzvCTKT9O-0lGOM4uzb1_9nL37us2_vsCstbVpFb8dkvIv7INmCKvgYg-5uOwtLMQ3YTTfENGBiN2BZ9uruZd6KbiYK_wPk0SF7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522948440</pqid></control><display><type>article</type><title>Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Carel, Clément ; Nukdee, Kanjana ; Cantaloube, Sylvain ; Bonne, Mélanie ; Diagne, Cheikh T ; Laval, Françoise ; Daffé, Mamadou ; Zerbib, Didier</creator><contributor>Kremer, Laurent</contributor><creatorcontrib>Carel, Clément ; Nukdee, Kanjana ; Cantaloube, Sylvain ; Bonne, Mélanie ; Diagne, Cheikh T ; Laval, Françoise ; Daffé, Mamadou ; Zerbib, Didier ; Kremer, Laurent</creatorcontrib><description>Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles' heel of the bacillus at all its growing stages.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0097148</identifier><identifier>PMID: 24817274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Antibiotics ; Arabinogalactan ; Bacteria ; Bacterial Proteins - metabolism ; Bacteriology ; Besra ; Biochemistry, Molecular Biology ; Biology and Life Sciences ; Biosynthesis ; Biosynthetic Pathways - physiology ; Cell cycle ; Cell division ; Cell Growth Processes - physiology ; Cell walls ; Elongation ; Enzymes ; Fatty Acid Synthase, Type II - metabolism ; Fatty acids ; Fatty-acid synthase ; Galactans - metabolism ; Gene Knockout Techniques ; Green Fluorescent Proteins ; Life Sciences ; Localization ; Machinery and equipment ; Medicine and Health Sciences ; Microbiology and Parasitology ; Microscopy, Video ; Molecular biology ; Molecular Structure ; Multiprotein Complexes - biosynthesis ; Multiprotein Complexes - metabolism ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - physiology ; Mycolic Acids - metabolism ; Peptidoglycan - metabolism ; Peptidoglycans ; Phosphorylation ; Physiological aspects ; Poles ; Proteins ; Sabatier, Paul (1854-1941) ; Septum ; Spindle Poles - metabolism ; Synthesis ; Tuberculosis</subject><ispartof>PloS one, 2014-05, Vol.9 (5), p.e97148-e97148</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Carel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 Carel et al 2014 Carel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373</citedby><cites>FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373</cites><orcidid>0000-0002-3991-4956 ; 0000-0001-7175-502X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1522948440/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1522948440?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24817274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01679118$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kremer, Laurent</contributor><creatorcontrib>Carel, Clément</creatorcontrib><creatorcontrib>Nukdee, Kanjana</creatorcontrib><creatorcontrib>Cantaloube, Sylvain</creatorcontrib><creatorcontrib>Bonne, Mélanie</creatorcontrib><creatorcontrib>Diagne, Cheikh T</creatorcontrib><creatorcontrib>Laval, Françoise</creatorcontrib><creatorcontrib>Daffé, Mamadou</creatorcontrib><creatorcontrib>Zerbib, Didier</creatorcontrib><title>Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles' heel of the bacillus at all its growing stages.</description><subject>Analysis</subject><subject>Antibiotics</subject><subject>Arabinogalactan</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Besra</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - physiology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell Growth Processes - physiology</subject><subject>Cell walls</subject><subject>Elongation</subject><subject>Enzymes</subject><subject>Fatty Acid Synthase, Type II - metabolism</subject><subject>Fatty acids</subject><subject>Fatty-acid synthase</subject><subject>Galactans - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Green Fluorescent Proteins</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Machinery and equipment</subject><subject>Medicine and Health Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Microscopy, Video</subject><subject>Molecular biology</subject><subject>Molecular Structure</subject><subject>Multiprotein Complexes - biosynthesis</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Mycolic Acids - metabolism</subject><subject>Peptidoglycan - metabolism</subject><subject>Peptidoglycans</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Poles</subject><subject>Proteins</subject><subject>Sabatier, Paul (1854-1941)</subject><subject>Septum</subject><subject>Spindle Poles - metabolism</subject><subject>Synthesis</subject><subject>Tuberculosis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISF6sUt8iO3cIK0qoJWKKnG6tRzH2XXl2KntLCzPwEPjdLdVt-oFykXsyff_nhlniuIlLOcQM_j-0o_BSTsfvNPzsqwZJPxRcQhrjGYUlfjxnfVB8SzGy7KsMKf0aXGACIcMMXJY_P2yUb6RKulgxh6ksdFBjdZHE8EQfNLGRWDc2tu1bvMC9Jm3RgGpTAvixqWVnljpWpCCdHHwIQHrlbTmjwbtxsne5I3dgORBhoG3LVgG_8u4JRi81dfSqIc09s-LJ520Ub_YvY-KH58-fj85nZ1ffD47WZzPFEM0zRBVuOtIiRClrOkayjrEGceQk4rXnHJCGqUrJKFuKIGqaxrFFMcYUkgoZvioeL31HXKhYtfIKGCFUE2yuszE2ZZovbwUQzC9DBvhpRHXAR-WQoZklNWiRbqWGBFas44o1nLZUMl0hSvEZc4xe33YnTY2vW6VdrlRds90_4szK7H0a0FKSBGj2eB4a7C6JztdnIspljlWQ8jXMLPvdocFfzXqmERvotLWSqf9eF0jgZRX1ZTXm3vow53YUUuZizWu8zlHNZmKBYGc4sxMHZ0_QOWn1fn68x_amRzfExzvCTKT9O-0lGOM4uzb1_9nL37us2_vsCstbVpFb8dkvIv7INmCKvgYg-5uOwtLMQ3YTTfENGBiN2BZ9uruZd6KbiYK_wPk0SF7</recordid><startdate>20140509</startdate><enddate>20140509</enddate><creator>Carel, Clément</creator><creator>Nukdee, Kanjana</creator><creator>Cantaloube, Sylvain</creator><creator>Bonne, Mélanie</creator><creator>Diagne, Cheikh T</creator><creator>Laval, Françoise</creator><creator>Daffé, Mamadou</creator><creator>Zerbib, Didier</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3991-4956</orcidid><orcidid>https://orcid.org/0000-0001-7175-502X</orcidid></search><sort><creationdate>20140509</creationdate><title>Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum</title><author>Carel, Clément ; Nukdee, Kanjana ; Cantaloube, Sylvain ; Bonne, Mélanie ; Diagne, Cheikh T ; Laval, Françoise ; Daffé, Mamadou ; Zerbib, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Antibiotics</topic><topic>Arabinogalactan</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Besra</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - physiology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell Growth Processes - physiology</topic><topic>Cell walls</topic><topic>Elongation</topic><topic>Enzymes</topic><topic>Fatty Acid Synthase, Type II - metabolism</topic><topic>Fatty acids</topic><topic>Fatty-acid synthase</topic><topic>Galactans - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Green Fluorescent Proteins</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Machinery and equipment</topic><topic>Medicine and Health Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Microscopy, Video</topic><topic>Molecular biology</topic><topic>Molecular Structure</topic><topic>Multiprotein Complexes - biosynthesis</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Mycolic Acids - metabolism</topic><topic>Peptidoglycan - metabolism</topic><topic>Peptidoglycans</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Poles</topic><topic>Proteins</topic><topic>Sabatier, Paul (1854-1941)</topic><topic>Septum</topic><topic>Spindle Poles - metabolism</topic><topic>Synthesis</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carel, Clément</creatorcontrib><creatorcontrib>Nukdee, Kanjana</creatorcontrib><creatorcontrib>Cantaloube, Sylvain</creatorcontrib><creatorcontrib>Bonne, Mélanie</creatorcontrib><creatorcontrib>Diagne, Cheikh T</creatorcontrib><creatorcontrib>Laval, Françoise</creatorcontrib><creatorcontrib>Daffé, Mamadou</creatorcontrib><creatorcontrib>Zerbib, Didier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carel, Clément</au><au>Nukdee, Kanjana</au><au>Cantaloube, Sylvain</au><au>Bonne, Mélanie</au><au>Diagne, Cheikh T</au><au>Laval, Françoise</au><au>Daffé, Mamadou</au><au>Zerbib, Didier</au><au>Kremer, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-05-09</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>e97148</spage><epage>e97148</epage><pages>e97148-e97148</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles' heel of the bacillus at all its growing stages.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24817274</pmid><doi>10.1371/journal.pone.0097148</doi><orcidid>https://orcid.org/0000-0002-3991-4956</orcidid><orcidid>https://orcid.org/0000-0001-7175-502X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-05, Vol.9 (5), p.e97148-e97148
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1522948440
source PubMed Central (Open Access); Publicly Available Content Database
subjects Analysis
Antibiotics
Arabinogalactan
Bacteria
Bacterial Proteins - metabolism
Bacteriology
Besra
Biochemistry, Molecular Biology
Biology and Life Sciences
Biosynthesis
Biosynthetic Pathways - physiology
Cell cycle
Cell division
Cell Growth Processes - physiology
Cell walls
Elongation
Enzymes
Fatty Acid Synthase, Type II - metabolism
Fatty acids
Fatty-acid synthase
Galactans - metabolism
Gene Knockout Techniques
Green Fluorescent Proteins
Life Sciences
Localization
Machinery and equipment
Medicine and Health Sciences
Microbiology and Parasitology
Microscopy, Video
Molecular biology
Molecular Structure
Multiprotein Complexes - biosynthesis
Multiprotein Complexes - metabolism
Mycobacterium tuberculosis
Mycobacterium tuberculosis - enzymology
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - physiology
Mycolic Acids - metabolism
Peptidoglycan - metabolism
Peptidoglycans
Phosphorylation
Physiological aspects
Poles
Proteins
Sabatier, Paul (1854-1941)
Septum
Spindle Poles - metabolism
Synthesis
Tuberculosis
title Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycobacterium%20tuberculosis%20proteins%20involved%20in%20mycolic%20acid%20synthesis%20and%20transport%20localize%20dynamically%20to%20the%20old%20growing%20pole%20and%20septum&rft.jtitle=PloS%20one&rft.au=Carel,%20Cl%C3%A9ment&rft.date=2014-05-09&rft.volume=9&rft.issue=5&rft.spage=e97148&rft.epage=e97148&rft.pages=e97148-e97148&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0097148&rft_dat=%3Cgale_plos_%3EA418634037%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-26c3ff4022667bfb67f2878318458986844bce52a1eb641cfbbc7c83316146373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1522948440&rft_id=info:pmid/24817274&rft_galeid=A418634037&rfr_iscdi=true