Loading…

Machine learning helps identify CHRONO as a circadian clock component

Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understa...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology 2014-04, Vol.12 (4), p.e1001840
Main Authors: Anafi, Ron C, Lee, Yool, Sato, Trey K, Venkataraman, Anand, Ramanathan, Chidambaram, Kavakli, Ibrahim H, Hughes, Michael E, Baggs, Julie E, Growe, Jacqueline, Liu, Andrew C, Kim, Junhyong, Hogenesch, John B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3
cites cdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3
container_end_page
container_issue 4
container_start_page e1001840
container_title PLoS biology
container_volume 12
creator Anafi, Ron C
Lee, Yool
Sato, Trey K
Venkataraman, Anand
Ramanathan, Chidambaram
Kavakli, Ibrahim H
Hughes, Michael E
Baggs, Julie E
Growe, Jacqueline
Liu, Andrew C
Kim, Junhyong
Hogenesch, John B
description Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.
doi_str_mv 10.1371/journal.pbio.1001840
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1525299789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A383047916</galeid><doaj_id>oai_doaj_org_article_9524308b57ad4b38a1489326a7186b21</doaj_id><sourcerecordid>A383047916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</originalsourceid><addsrcrecordid>eNqVkktvEzEUhUcIREvhHyAYqSsWCfbYHtsbpCoqNFJppPLYWnf8mDhMxiN7gui_xyFp1ZFYgLzw6zvnyse3KF5jNMeE4_ebsIs9dPOh8WGOEcKCoifFKWaUzbgQ7Omj9UnxIqUNQlUlK_G8OKkoJxwhdFpcfga99r0tOwux931brm03pNIb24_e3ZWLq9vVzaqEVEKpfdRgPPSl7oL-UeqwHUKfwZfFMwddsq-O81nx7ePl18XV7Hr1abm4uJ7puubjDBtKa8spY846afMOJLZICwqaWo2IMcI2mjgmKTeUSOZqizi3tMFcC0fOircH36ELSR0TSAqzilVSciEzsTwQJsBGDdFvId6pAF79OQixVRBHrzurJKsoQaJhHAxtiABMs0FVA8eibiqcvT4cq-2arTU6PzRCNzGd3vR-rdrwUxEpBEJ1Njg_GLSQ6_nehYzprU9aXRBBEOUS76n5X6g8jN16nfN1Pp9PBO8mgsyM9tfYwi4ltfxy-x_szb-zq-9Tlh5YHUNK0bqHWDBS-_68_x2170917M8se_M40gfRfUOS35SM3zE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning helps identify CHRONO as a circadian clock component</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Anafi, Ron C ; Lee, Yool ; Sato, Trey K ; Venkataraman, Anand ; Ramanathan, Chidambaram ; Kavakli, Ibrahim H ; Hughes, Michael E ; Baggs, Julie E ; Growe, Jacqueline ; Liu, Andrew C ; Kim, Junhyong ; Hogenesch, John B</creator><contributor>Schibler, Ueli</contributor><creatorcontrib>Anafi, Ron C ; Lee, Yool ; Sato, Trey K ; Venkataraman, Anand ; Ramanathan, Chidambaram ; Kavakli, Ibrahim H ; Hughes, Michael E ; Baggs, Julie E ; Growe, Jacqueline ; Liu, Andrew C ; Kim, Junhyong ; Hogenesch, John B ; Schibler, Ueli</creatorcontrib><description>Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1001840</identifier><identifier>PMID: 24737000</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3T3 Cells ; Amino Acid Sequence ; Animals ; ARNTL Transcription Factors - metabolism ; Artificial Intelligence ; Biology and Life Sciences ; Cell Line ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Circadian Rhythm Signaling Peptides and Proteins - biosynthesis ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cryptochromes - genetics ; Experiments ; Gene expression ; Genes ; Genetic aspects ; Genetic research ; Genomes ; HEK293 Cells ; Histone Deacetylases - metabolism ; Humans ; Kinases ; Machine learning ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Mutagenesis ; Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics ; Proteins ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Glucocorticoid - metabolism ; Repressor Proteins - biosynthesis ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rodents ; Sequence Alignment ; Transcription, Genetic - genetics</subject><ispartof>PLoS biology, 2014-04, Vol.12 (4), p.e1001840</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Anafi et al 2014 Anafi et al</rights><rights>2014 Anafi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Anafi RC, Lee Y, Sato TK, Venkataraman A, Ramanathan C, et al. (2014) Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biol 12(4): e1001840. doi:10.1371/journal.pbio.1001840</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</citedby><cites>FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988006/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988006/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24737000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schibler, Ueli</contributor><creatorcontrib>Anafi, Ron C</creatorcontrib><creatorcontrib>Lee, Yool</creatorcontrib><creatorcontrib>Sato, Trey K</creatorcontrib><creatorcontrib>Venkataraman, Anand</creatorcontrib><creatorcontrib>Ramanathan, Chidambaram</creatorcontrib><creatorcontrib>Kavakli, Ibrahim H</creatorcontrib><creatorcontrib>Hughes, Michael E</creatorcontrib><creatorcontrib>Baggs, Julie E</creatorcontrib><creatorcontrib>Growe, Jacqueline</creatorcontrib><creatorcontrib>Liu, Andrew C</creatorcontrib><creatorcontrib>Kim, Junhyong</creatorcontrib><creatorcontrib>Hogenesch, John B</creatorcontrib><title>Machine learning helps identify CHRONO as a circadian clock component</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.</description><subject>3T3 Cells</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>ARNTL Transcription Factors - metabolism</subject><subject>Artificial Intelligence</subject><subject>Biology and Life Sciences</subject><subject>Cell Line</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - biosynthesis</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cryptochromes - genetics</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Kinases</subject><subject>Machine learning</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics</subject><subject>Proteins</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Glucocorticoid - metabolism</subject><subject>Repressor Proteins - biosynthesis</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rodents</subject><subject>Sequence Alignment</subject><subject>Transcription, Genetic - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkktvEzEUhUcIREvhHyAYqSsWCfbYHtsbpCoqNFJppPLYWnf8mDhMxiN7gui_xyFp1ZFYgLzw6zvnyse3KF5jNMeE4_ebsIs9dPOh8WGOEcKCoifFKWaUzbgQ7Omj9UnxIqUNQlUlK_G8OKkoJxwhdFpcfga99r0tOwux931brm03pNIb24_e3ZWLq9vVzaqEVEKpfdRgPPSl7oL-UeqwHUKfwZfFMwddsq-O81nx7ePl18XV7Hr1abm4uJ7puubjDBtKa8spY846afMOJLZICwqaWo2IMcI2mjgmKTeUSOZqizi3tMFcC0fOircH36ELSR0TSAqzilVSciEzsTwQJsBGDdFvId6pAF79OQixVRBHrzurJKsoQaJhHAxtiABMs0FVA8eibiqcvT4cq-2arTU6PzRCNzGd3vR-rdrwUxEpBEJ1Njg_GLSQ6_nehYzprU9aXRBBEOUS76n5X6g8jN16nfN1Pp9PBO8mgsyM9tfYwi4ltfxy-x_szb-zq-9Tlh5YHUNK0bqHWDBS-_68_x2170917M8se_M40gfRfUOS35SM3zE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Anafi, Ron C</creator><creator>Lee, Yool</creator><creator>Sato, Trey K</creator><creator>Venkataraman, Anand</creator><creator>Ramanathan, Chidambaram</creator><creator>Kavakli, Ibrahim H</creator><creator>Hughes, Michael E</creator><creator>Baggs, Julie E</creator><creator>Growe, Jacqueline</creator><creator>Liu, Andrew C</creator><creator>Kim, Junhyong</creator><creator>Hogenesch, John B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20140401</creationdate><title>Machine learning helps identify CHRONO as a circadian clock component</title><author>Anafi, Ron C ; Lee, Yool ; Sato, Trey K ; Venkataraman, Anand ; Ramanathan, Chidambaram ; Kavakli, Ibrahim H ; Hughes, Michael E ; Baggs, Julie E ; Growe, Jacqueline ; Liu, Andrew C ; Kim, Junhyong ; Hogenesch, John B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3T3 Cells</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>ARNTL Transcription Factors - metabolism</topic><topic>Artificial Intelligence</topic><topic>Biology and Life Sciences</topic><topic>Cell Line</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - biosynthesis</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cryptochromes - genetics</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Kinases</topic><topic>Machine learning</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics</topic><topic>Proteins</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Glucocorticoid - metabolism</topic><topic>Repressor Proteins - biosynthesis</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rodents</topic><topic>Sequence Alignment</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anafi, Ron C</creatorcontrib><creatorcontrib>Lee, Yool</creatorcontrib><creatorcontrib>Sato, Trey K</creatorcontrib><creatorcontrib>Venkataraman, Anand</creatorcontrib><creatorcontrib>Ramanathan, Chidambaram</creatorcontrib><creatorcontrib>Kavakli, Ibrahim H</creatorcontrib><creatorcontrib>Hughes, Michael E</creatorcontrib><creatorcontrib>Baggs, Julie E</creatorcontrib><creatorcontrib>Growe, Jacqueline</creatorcontrib><creatorcontrib>Liu, Andrew C</creatorcontrib><creatorcontrib>Kim, Junhyong</creatorcontrib><creatorcontrib>Hogenesch, John B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anafi, Ron C</au><au>Lee, Yool</au><au>Sato, Trey K</au><au>Venkataraman, Anand</au><au>Ramanathan, Chidambaram</au><au>Kavakli, Ibrahim H</au><au>Hughes, Michael E</au><au>Baggs, Julie E</au><au>Growe, Jacqueline</au><au>Liu, Andrew C</au><au>Kim, Junhyong</au><au>Hogenesch, John B</au><au>Schibler, Ueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning helps identify CHRONO as a circadian clock component</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>12</volume><issue>4</issue><spage>e1001840</spage><pages>e1001840-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24737000</pmid><doi>10.1371/journal.pbio.1001840</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2014-04, Vol.12 (4), p.e1001840
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1525299789
source Publicly Available Content Database; PubMed Central
subjects 3T3 Cells
Amino Acid Sequence
Animals
ARNTL Transcription Factors - metabolism
Artificial Intelligence
Biology and Life Sciences
Cell Line
Circadian Clocks - genetics
Circadian Clocks - physiology
Circadian rhythm
Circadian Rhythm - genetics
Circadian Rhythm - physiology
Circadian Rhythm Signaling Peptides and Proteins - biosynthesis
Circadian Rhythm Signaling Peptides and Proteins - genetics
Circadian Rhythm Signaling Peptides and Proteins - metabolism
Circadian rhythms
Cryptochromes - genetics
Experiments
Gene expression
Genes
Genetic aspects
Genetic research
Genomes
HEK293 Cells
Histone Deacetylases - metabolism
Humans
Kinases
Machine learning
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Molecular Sequence Data
Mutagenesis
Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics
Proteins
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Glucocorticoid - metabolism
Repressor Proteins - biosynthesis
Repressor Proteins - genetics
Repressor Proteins - metabolism
Rodents
Sequence Alignment
Transcription, Genetic - genetics
title Machine learning helps identify CHRONO as a circadian clock component
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20helps%20identify%20CHRONO%20as%20a%20circadian%20clock%20component&rft.jtitle=PLoS%20biology&rft.au=Anafi,%20Ron%20C&rft.date=2014-04-01&rft.volume=12&rft.issue=4&rft.spage=e1001840&rft.pages=e1001840-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1001840&rft_dat=%3Cgale_plos_%3EA383047916%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24737000&rft_galeid=A383047916&rfr_iscdi=true