Loading…
Machine learning helps identify CHRONO as a circadian clock component
Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understa...
Saved in:
Published in: | PLoS biology 2014-04, Vol.12 (4), p.e1001840 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3 |
container_end_page | |
container_issue | 4 |
container_start_page | e1001840 |
container_title | PLoS biology |
container_volume | 12 |
creator | Anafi, Ron C Lee, Yool Sato, Trey K Venkataraman, Anand Ramanathan, Chidambaram Kavakli, Ibrahim H Hughes, Michael E Baggs, Julie E Growe, Jacqueline Liu, Andrew C Kim, Junhyong Hogenesch, John B |
description | Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. |
doi_str_mv | 10.1371/journal.pbio.1001840 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1525299789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A383047916</galeid><doaj_id>oai_doaj_org_article_9524308b57ad4b38a1489326a7186b21</doaj_id><sourcerecordid>A383047916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</originalsourceid><addsrcrecordid>eNqVkktvEzEUhUcIREvhHyAYqSsWCfbYHtsbpCoqNFJppPLYWnf8mDhMxiN7gui_xyFp1ZFYgLzw6zvnyse3KF5jNMeE4_ebsIs9dPOh8WGOEcKCoifFKWaUzbgQ7Omj9UnxIqUNQlUlK_G8OKkoJxwhdFpcfga99r0tOwux931brm03pNIb24_e3ZWLq9vVzaqEVEKpfdRgPPSl7oL-UeqwHUKfwZfFMwddsq-O81nx7ePl18XV7Hr1abm4uJ7puubjDBtKa8spY846afMOJLZICwqaWo2IMcI2mjgmKTeUSOZqizi3tMFcC0fOircH36ELSR0TSAqzilVSciEzsTwQJsBGDdFvId6pAF79OQixVRBHrzurJKsoQaJhHAxtiABMs0FVA8eibiqcvT4cq-2arTU6PzRCNzGd3vR-rdrwUxEpBEJ1Njg_GLSQ6_nehYzprU9aXRBBEOUS76n5X6g8jN16nfN1Pp9PBO8mgsyM9tfYwi4ltfxy-x_szb-zq-9Tlh5YHUNK0bqHWDBS-_68_x2170917M8se_M40gfRfUOS35SM3zE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning helps identify CHRONO as a circadian clock component</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Anafi, Ron C ; Lee, Yool ; Sato, Trey K ; Venkataraman, Anand ; Ramanathan, Chidambaram ; Kavakli, Ibrahim H ; Hughes, Michael E ; Baggs, Julie E ; Growe, Jacqueline ; Liu, Andrew C ; Kim, Junhyong ; Hogenesch, John B</creator><contributor>Schibler, Ueli</contributor><creatorcontrib>Anafi, Ron C ; Lee, Yool ; Sato, Trey K ; Venkataraman, Anand ; Ramanathan, Chidambaram ; Kavakli, Ibrahim H ; Hughes, Michael E ; Baggs, Julie E ; Growe, Jacqueline ; Liu, Andrew C ; Kim, Junhyong ; Hogenesch, John B ; Schibler, Ueli</creatorcontrib><description>Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1001840</identifier><identifier>PMID: 24737000</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3T3 Cells ; Amino Acid Sequence ; Animals ; ARNTL Transcription Factors - metabolism ; Artificial Intelligence ; Biology and Life Sciences ; Cell Line ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Circadian Rhythm Signaling Peptides and Proteins - biosynthesis ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cryptochromes - genetics ; Experiments ; Gene expression ; Genes ; Genetic aspects ; Genetic research ; Genomes ; HEK293 Cells ; Histone Deacetylases - metabolism ; Humans ; Kinases ; Machine learning ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Mutagenesis ; Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics ; Proteins ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Glucocorticoid - metabolism ; Repressor Proteins - biosynthesis ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rodents ; Sequence Alignment ; Transcription, Genetic - genetics</subject><ispartof>PLoS biology, 2014-04, Vol.12 (4), p.e1001840</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Anafi et al 2014 Anafi et al</rights><rights>2014 Anafi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Anafi RC, Lee Y, Sato TK, Venkataraman A, Ramanathan C, et al. (2014) Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biol 12(4): e1001840. doi:10.1371/journal.pbio.1001840</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</citedby><cites>FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988006/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988006/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24737000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schibler, Ueli</contributor><creatorcontrib>Anafi, Ron C</creatorcontrib><creatorcontrib>Lee, Yool</creatorcontrib><creatorcontrib>Sato, Trey K</creatorcontrib><creatorcontrib>Venkataraman, Anand</creatorcontrib><creatorcontrib>Ramanathan, Chidambaram</creatorcontrib><creatorcontrib>Kavakli, Ibrahim H</creatorcontrib><creatorcontrib>Hughes, Michael E</creatorcontrib><creatorcontrib>Baggs, Julie E</creatorcontrib><creatorcontrib>Growe, Jacqueline</creatorcontrib><creatorcontrib>Liu, Andrew C</creatorcontrib><creatorcontrib>Kim, Junhyong</creatorcontrib><creatorcontrib>Hogenesch, John B</creatorcontrib><title>Machine learning helps identify CHRONO as a circadian clock component</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.</description><subject>3T3 Cells</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>ARNTL Transcription Factors - metabolism</subject><subject>Artificial Intelligence</subject><subject>Biology and Life Sciences</subject><subject>Cell Line</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - biosynthesis</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cryptochromes - genetics</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Kinases</subject><subject>Machine learning</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics</subject><subject>Proteins</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Glucocorticoid - metabolism</subject><subject>Repressor Proteins - biosynthesis</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rodents</subject><subject>Sequence Alignment</subject><subject>Transcription, Genetic - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkktvEzEUhUcIREvhHyAYqSsWCfbYHtsbpCoqNFJppPLYWnf8mDhMxiN7gui_xyFp1ZFYgLzw6zvnyse3KF5jNMeE4_ebsIs9dPOh8WGOEcKCoifFKWaUzbgQ7Omj9UnxIqUNQlUlK_G8OKkoJxwhdFpcfga99r0tOwux931brm03pNIb24_e3ZWLq9vVzaqEVEKpfdRgPPSl7oL-UeqwHUKfwZfFMwddsq-O81nx7ePl18XV7Hr1abm4uJ7puubjDBtKa8spY846afMOJLZICwqaWo2IMcI2mjgmKTeUSOZqizi3tMFcC0fOircH36ELSR0TSAqzilVSciEzsTwQJsBGDdFvId6pAF79OQixVRBHrzurJKsoQaJhHAxtiABMs0FVA8eibiqcvT4cq-2arTU6PzRCNzGd3vR-rdrwUxEpBEJ1Njg_GLSQ6_nehYzprU9aXRBBEOUS76n5X6g8jN16nfN1Pp9PBO8mgsyM9tfYwi4ltfxy-x_szb-zq-9Tlh5YHUNK0bqHWDBS-_68_x2170917M8se_M40gfRfUOS35SM3zE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Anafi, Ron C</creator><creator>Lee, Yool</creator><creator>Sato, Trey K</creator><creator>Venkataraman, Anand</creator><creator>Ramanathan, Chidambaram</creator><creator>Kavakli, Ibrahim H</creator><creator>Hughes, Michael E</creator><creator>Baggs, Julie E</creator><creator>Growe, Jacqueline</creator><creator>Liu, Andrew C</creator><creator>Kim, Junhyong</creator><creator>Hogenesch, John B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20140401</creationdate><title>Machine learning helps identify CHRONO as a circadian clock component</title><author>Anafi, Ron C ; Lee, Yool ; Sato, Trey K ; Venkataraman, Anand ; Ramanathan, Chidambaram ; Kavakli, Ibrahim H ; Hughes, Michael E ; Baggs, Julie E ; Growe, Jacqueline ; Liu, Andrew C ; Kim, Junhyong ; Hogenesch, John B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3T3 Cells</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>ARNTL Transcription Factors - metabolism</topic><topic>Artificial Intelligence</topic><topic>Biology and Life Sciences</topic><topic>Cell Line</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - biosynthesis</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cryptochromes - genetics</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Kinases</topic><topic>Machine learning</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics</topic><topic>Proteins</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Glucocorticoid - metabolism</topic><topic>Repressor Proteins - biosynthesis</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rodents</topic><topic>Sequence Alignment</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anafi, Ron C</creatorcontrib><creatorcontrib>Lee, Yool</creatorcontrib><creatorcontrib>Sato, Trey K</creatorcontrib><creatorcontrib>Venkataraman, Anand</creatorcontrib><creatorcontrib>Ramanathan, Chidambaram</creatorcontrib><creatorcontrib>Kavakli, Ibrahim H</creatorcontrib><creatorcontrib>Hughes, Michael E</creatorcontrib><creatorcontrib>Baggs, Julie E</creatorcontrib><creatorcontrib>Growe, Jacqueline</creatorcontrib><creatorcontrib>Liu, Andrew C</creatorcontrib><creatorcontrib>Kim, Junhyong</creatorcontrib><creatorcontrib>Hogenesch, John B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anafi, Ron C</au><au>Lee, Yool</au><au>Sato, Trey K</au><au>Venkataraman, Anand</au><au>Ramanathan, Chidambaram</au><au>Kavakli, Ibrahim H</au><au>Hughes, Michael E</au><au>Baggs, Julie E</au><au>Growe, Jacqueline</au><au>Liu, Andrew C</au><au>Kim, Junhyong</au><au>Hogenesch, John B</au><au>Schibler, Ueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning helps identify CHRONO as a circadian clock component</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>12</volume><issue>4</issue><spage>e1001840</spage><pages>e1001840-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24737000</pmid><doi>10.1371/journal.pbio.1001840</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2014-04, Vol.12 (4), p.e1001840 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1525299789 |
source | Publicly Available Content Database; PubMed Central |
subjects | 3T3 Cells Amino Acid Sequence Animals ARNTL Transcription Factors - metabolism Artificial Intelligence Biology and Life Sciences Cell Line Circadian Clocks - genetics Circadian Clocks - physiology Circadian rhythm Circadian Rhythm - genetics Circadian Rhythm - physiology Circadian Rhythm Signaling Peptides and Proteins - biosynthesis Circadian Rhythm Signaling Peptides and Proteins - genetics Circadian Rhythm Signaling Peptides and Proteins - metabolism Circadian rhythms Cryptochromes - genetics Experiments Gene expression Genes Genetic aspects Genetic research Genomes HEK293 Cells Histone Deacetylases - metabolism Humans Kinases Machine learning Male Mice Mice, Inbred C57BL Mice, Knockout Molecular Sequence Data Mutagenesis Nuclear Receptor Subfamily 1, Group D, Member 1 - genetics Proteins Receptors, Cytoplasmic and Nuclear - genetics Receptors, Glucocorticoid - metabolism Repressor Proteins - biosynthesis Repressor Proteins - genetics Repressor Proteins - metabolism Rodents Sequence Alignment Transcription, Genetic - genetics |
title | Machine learning helps identify CHRONO as a circadian clock component |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20helps%20identify%20CHRONO%20as%20a%20circadian%20clock%20component&rft.jtitle=PLoS%20biology&rft.au=Anafi,%20Ron%20C&rft.date=2014-04-01&rft.volume=12&rft.issue=4&rft.spage=e1001840&rft.pages=e1001840-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1001840&rft_dat=%3Cgale_plos_%3EA383047916%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c667t-1d446e7455fef9ed44a91e0c84ac4ec03dd8ebc3f5947d4395f6e077e4b17c8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24737000&rft_galeid=A383047916&rfr_iscdi=true |