Loading…
Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain
The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 c...
Saved in:
Published in: | PloS one 2014-06, Vol.9 (6), p.e98445-e98445 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3 |
container_end_page | e98445 |
container_issue | 6 |
container_start_page | e98445 |
container_title | PloS one |
container_volume | 9 |
creator | Wang, Yuying Hu, Chunsheng Ming, Hua Oenema, Oene Schaefer, Douglas A Dong, Wenxu Zhang, Yuming Li, Xiaoxin |
description | The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1) year(-1)) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile. |
doi_str_mv | 10.1371/journal.pone.0098445 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1531988015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416968958</galeid><doaj_id>oai_doaj_org_article_00938abf563947a68e6b955850651a5b</doaj_id><sourcerecordid>A416968958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3</originalsourceid><addsrcrecordid>eNqNU11rFDEUHUSxtfoPRAOCKLhrspnJJD4IpfhRqFb8eg13MpmdlEyyJhm3-uwPN9Pdlq70QQZyk8w5J8m59xbFQ4LnhNbk5ZkfgwM7X3mn5xgLXpbVrWKfCLqYsQWmt6_N94p7MZ5hXFHO2N1ib1FysRCU7Bd_PujUg9MvkILQeIda489NqxG4FjmTgh8j2ux0djzXERmHojcWrYLvjNVodK0OCNDauJQn615DmsVxGPJiAPNbo-ATJJO1MzX1Gn30IfXoqDcO0CcLxt0v7nRgo36wjQfFt7dvvh69n52cvjs-OjyZqbqkacZagnnTMSAtI61qG4WhoVzUitWKY9E1uFHABIOG16zJoyaqwroljEJm0oPi8UZ3ZX2UWwOjJBUlgnOc40FxvEG0Hs7kKpgBwi_pwciLDR-WEkIyymqZLaccmq5iVJQ1MK5ZI6qKV5hVBKrptFcbrTUstTMuD9JBUCZeCFrThEl8PQbp7BRWYxNlKTCpWSa_3l51bAbdKu1SALtzo90_zvRy6X_KEpeUlyQLPNsKBP9j1DHJwUSlrc3JzjmdHr0QJa9qkaFP_oHebM0WtYT8euM6n89Vk6g8LEl2nYuKZ9T8BlT-Wj0YlUt1qpldwvMdQsYkfZ6WMMYoj798_n_s6fdd7NNr2FyUNvXR23EqxLgLLDdAFXyMQXdXJhMsp067dENOnSa3nZZpj64n6Ip02Vr0L1K8JrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531988015</pqid></control><display><type>article</type><title>Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Yuying ; Hu, Chunsheng ; Ming, Hua ; Oenema, Oene ; Schaefer, Douglas A ; Dong, Wenxu ; Zhang, Yuming ; Li, Xiaoxin</creator><contributor>Hui, Dafeng</contributor><creatorcontrib>Wang, Yuying ; Hu, Chunsheng ; Ming, Hua ; Oenema, Oene ; Schaefer, Douglas A ; Dong, Wenxu ; Zhang, Yuming ; Li, Xiaoxin ; Hui, Dafeng</creatorcontrib><description>The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1) year(-1)) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0098445</identifier><identifier>PMID: 24892931</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural production ; Agriculture ; Air pollution ; Atmosphere ; Biochemistry ; Biology and Life Sciences ; Carbon dioxide ; Carbon Dioxide - analysis ; Carbon dioxide flux ; ch4 ; China ; Climate change ; co2 efflux ; Consumption ; Corn ; Crop rotation ; Crops ; Developmental biology ; diffusion ; Earth Sciences ; Ecology and Environmental Sciences ; Emissions ; Fertilizers ; Fluxes ; forest soils ; Gas chromatography ; gas emissions ; Gas sampling ; Greenhouse effect ; Greenhouse gases ; Irrigation ; Laboratories ; Methane ; Methane - analysis ; mitigation ; Moisture content ; n2o fluxes ; Nitrogen ; Nitrous oxide ; Nitrous Oxide - analysis ; Nitrous oxides ; Physical Sciences ; Research and Analysis Methods ; Respiration ; Seasons ; slurry ; Soil - chemistry ; Soil layers ; Soil moisture ; Soil profiles ; Soil water ; Studies ; Subsoils ; Summer ; temperature ; Triticum ; Triticum aestivum ; Urine ; Wheat ; Winter ; Winter wheat ; Zea mays</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e98445-e98445</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Wang et al 2014 Wang et al</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3</citedby><cites>FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1531988015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1531988015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24892931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hui, Dafeng</contributor><creatorcontrib>Wang, Yuying</creatorcontrib><creatorcontrib>Hu, Chunsheng</creatorcontrib><creatorcontrib>Ming, Hua</creatorcontrib><creatorcontrib>Oenema, Oene</creatorcontrib><creatorcontrib>Schaefer, Douglas A</creatorcontrib><creatorcontrib>Dong, Wenxu</creatorcontrib><creatorcontrib>Zhang, Yuming</creatorcontrib><creatorcontrib>Li, Xiaoxin</creatorcontrib><title>Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1) year(-1)) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Air pollution</subject><subject>Atmosphere</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon dioxide flux</subject><subject>ch4</subject><subject>China</subject><subject>Climate change</subject><subject>co2 efflux</subject><subject>Consumption</subject><subject>Corn</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Developmental biology</subject><subject>diffusion</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Emissions</subject><subject>Fertilizers</subject><subject>Fluxes</subject><subject>forest soils</subject><subject>Gas chromatography</subject><subject>gas emissions</subject><subject>Gas sampling</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Irrigation</subject><subject>Laboratories</subject><subject>Methane</subject><subject>Methane - analysis</subject><subject>mitigation</subject><subject>Moisture content</subject><subject>n2o fluxes</subject><subject>Nitrogen</subject><subject>Nitrous oxide</subject><subject>Nitrous Oxide - analysis</subject><subject>Nitrous oxides</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Respiration</subject><subject>Seasons</subject><subject>slurry</subject><subject>Soil - chemistry</subject><subject>Soil layers</subject><subject>Soil moisture</subject><subject>Soil profiles</subject><subject>Soil water</subject><subject>Studies</subject><subject>Subsoils</subject><subject>Summer</subject><subject>temperature</subject><subject>Triticum</subject><subject>Triticum aestivum</subject><subject>Urine</subject><subject>Wheat</subject><subject>Winter</subject><subject>Winter wheat</subject><subject>Zea mays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNU11rFDEUHUSxtfoPRAOCKLhrspnJJD4IpfhRqFb8eg13MpmdlEyyJhm3-uwPN9Pdlq70QQZyk8w5J8m59xbFQ4LnhNbk5ZkfgwM7X3mn5xgLXpbVrWKfCLqYsQWmt6_N94p7MZ5hXFHO2N1ib1FysRCU7Bd_PujUg9MvkILQeIda489NqxG4FjmTgh8j2ux0djzXERmHojcWrYLvjNVodK0OCNDauJQn615DmsVxGPJiAPNbo-ATJJO1MzX1Gn30IfXoqDcO0CcLxt0v7nRgo36wjQfFt7dvvh69n52cvjs-OjyZqbqkacZagnnTMSAtI61qG4WhoVzUitWKY9E1uFHABIOG16zJoyaqwroljEJm0oPi8UZ3ZX2UWwOjJBUlgnOc40FxvEG0Hs7kKpgBwi_pwciLDR-WEkIyymqZLaccmq5iVJQ1MK5ZI6qKV5hVBKrptFcbrTUstTMuD9JBUCZeCFrThEl8PQbp7BRWYxNlKTCpWSa_3l51bAbdKu1SALtzo90_zvRy6X_KEpeUlyQLPNsKBP9j1DHJwUSlrc3JzjmdHr0QJa9qkaFP_oHebM0WtYT8euM6n89Vk6g8LEl2nYuKZ9T8BlT-Wj0YlUt1qpldwvMdQsYkfZ6WMMYoj798_n_s6fdd7NNr2FyUNvXR23EqxLgLLDdAFXyMQXdXJhMsp067dENOnSa3nZZpj64n6Ip02Vr0L1K8JrA</recordid><startdate>20140603</startdate><enddate>20140603</enddate><creator>Wang, Yuying</creator><creator>Hu, Chunsheng</creator><creator>Ming, Hua</creator><creator>Oenema, Oene</creator><creator>Schaefer, Douglas A</creator><creator>Dong, Wenxu</creator><creator>Zhang, Yuming</creator><creator>Li, Xiaoxin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20140603</creationdate><title>Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain</title><author>Wang, Yuying ; Hu, Chunsheng ; Ming, Hua ; Oenema, Oene ; Schaefer, Douglas A ; Dong, Wenxu ; Zhang, Yuming ; Li, Xiaoxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Air pollution</topic><topic>Atmosphere</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon dioxide flux</topic><topic>ch4</topic><topic>China</topic><topic>Climate change</topic><topic>co2 efflux</topic><topic>Consumption</topic><topic>Corn</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Developmental biology</topic><topic>diffusion</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Emissions</topic><topic>Fertilizers</topic><topic>Fluxes</topic><topic>forest soils</topic><topic>Gas chromatography</topic><topic>gas emissions</topic><topic>Gas sampling</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Irrigation</topic><topic>Laboratories</topic><topic>Methane</topic><topic>Methane - analysis</topic><topic>mitigation</topic><topic>Moisture content</topic><topic>n2o fluxes</topic><topic>Nitrogen</topic><topic>Nitrous oxide</topic><topic>Nitrous Oxide - analysis</topic><topic>Nitrous oxides</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Respiration</topic><topic>Seasons</topic><topic>slurry</topic><topic>Soil - chemistry</topic><topic>Soil layers</topic><topic>Soil moisture</topic><topic>Soil profiles</topic><topic>Soil water</topic><topic>Studies</topic><topic>Subsoils</topic><topic>Summer</topic><topic>temperature</topic><topic>Triticum</topic><topic>Triticum aestivum</topic><topic>Urine</topic><topic>Wheat</topic><topic>Winter</topic><topic>Winter wheat</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuying</creatorcontrib><creatorcontrib>Hu, Chunsheng</creatorcontrib><creatorcontrib>Ming, Hua</creatorcontrib><creatorcontrib>Oenema, Oene</creatorcontrib><creatorcontrib>Schaefer, Douglas A</creatorcontrib><creatorcontrib>Dong, Wenxu</creatorcontrib><creatorcontrib>Zhang, Yuming</creatorcontrib><creatorcontrib>Li, Xiaoxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuying</au><au>Hu, Chunsheng</au><au>Ming, Hua</au><au>Oenema, Oene</au><au>Schaefer, Douglas A</au><au>Dong, Wenxu</au><au>Zhang, Yuming</au><au>Li, Xiaoxin</au><au>Hui, Dafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-03</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e98445</spage><epage>e98445</epage><pages>e98445-e98445</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1) year(-1)) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24892931</pmid><doi>10.1371/journal.pone.0098445</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-06, Vol.9 (6), p.e98445-e98445 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1531988015 |
source | Publicly Available Content Database; PubMed Central |
subjects | Agricultural production Agriculture Air pollution Atmosphere Biochemistry Biology and Life Sciences Carbon dioxide Carbon Dioxide - analysis Carbon dioxide flux ch4 China Climate change co2 efflux Consumption Corn Crop rotation Crops Developmental biology diffusion Earth Sciences Ecology and Environmental Sciences Emissions Fertilizers Fluxes forest soils Gas chromatography gas emissions Gas sampling Greenhouse effect Greenhouse gases Irrigation Laboratories Methane Methane - analysis mitigation Moisture content n2o fluxes Nitrogen Nitrous oxide Nitrous Oxide - analysis Nitrous oxides Physical Sciences Research and Analysis Methods Respiration Seasons slurry Soil - chemistry Soil layers Soil moisture Soil profiles Soil water Studies Subsoils Summer temperature Triticum Triticum aestivum Urine Wheat Winter Winter wheat Zea mays |
title | Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane,%20carbon%20dioxide%20and%20nitrous%20oxide%20fluxes%20in%20soil%20profile%20under%20a%20winter%20wheat-summer%20maize%20rotation%20in%20the%20North%20China%20Plain&rft.jtitle=PloS%20one&rft.au=Wang,%20Yuying&rft.date=2014-06-03&rft.volume=9&rft.issue=6&rft.spage=e98445&rft.epage=e98445&rft.pages=e98445-e98445&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0098445&rft_dat=%3Cgale_plos_%3EA416968958%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c743t-6d108bf6a1d61dcdbc0ab3897c67c809fb0bca696ab876bab8e1c50ed163a08b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531988015&rft_id=info:pmid/24892931&rft_galeid=A416968958&rfr_iscdi=true |