Loading…

The hnRNP-Q protein LIF2 participates in the plant immune response

Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-06, Vol.9 (6), p.e99343-e99343
Main Authors: Le Roux, Clémentine, Del Prete, Stefania, Boutet-Mercey, Stéphanie, Perreau, François, Balagué, Claudine, Roby, Dominique, Fagard, Mathilde, Gaudin, Valérie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753
cites cdi_FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753
container_end_page e99343
container_issue 6
container_start_page e99343
container_title PloS one
container_volume 9
creator Le Roux, Clémentine
Del Prete, Stefania
Boutet-Mercey, Stéphanie
Perreau, François
Balagué, Claudine
Roby, Dominique
Fagard, Mathilde
Gaudin, Valérie
description Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
doi_str_mv 10.1371/journal.pone.0099343
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1534520888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418635883</galeid><doaj_id>oai_doaj_org_article_60dd185da9054eafa1c42156d50a8670</doaj_id><sourcerecordid>A418635883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkLsIsXfcW4mlYmxShWDMbi1XMdpXCVxsJ0J_j1um03NtAuUi0THz_uej_gkyWsIZhDn8OPGDq6Tzay3nZ4BUBSY4CfJMSwwyhgC-OnB91HywvsNABRzxp4nR4gUkPACHiefbmqd1t3112_Z97R3NmjTpcvFBUp76YJRppdB-zQGQwT7RnYhNW07dDp12sfcXr9MnlWy8frV-D5Jfl58vjm_zJZXXxbn82WmcsRCRgstK16yUqOKAa2oArLAJaNcEUD4iuQEEkAlkBJiWeKq4hKqvIArihTIKT5J3u59-8Z6MbbvBaSYUAQ455FY7InSyo3onWml-yusNGIXsG4tdk01WjBQlpDTUhaAklhYTEUQpKykQHKWg-h1NmYbVq0ule6Ck83EdHrSmVqs7a2IPUC2K_d0b1A_kF3Ol2IbAxCBCINbGNkPYzJnfw_aB9Ear3QTx63tsOuRMkQhIhF99wB9fBIjtZaxWdNVNtaotqZiTiBnmEYoUrNHqPiUujUq3qvKxPhEcDoRRCboP2EtB-_F4sf1_7NXv6bs-wO21rIJtbfNEEy8YFOQ7EHlrPdOV_eThUBs1-JuGmK7FmJciyh7c_gz70V3e4D_AcrXBFM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534520888</pqid></control><display><type>article</type><title>The hnRNP-Q protein LIF2 participates in the plant immune response</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Le Roux, Clémentine ; Del Prete, Stefania ; Boutet-Mercey, Stéphanie ; Perreau, François ; Balagué, Claudine ; Roby, Dominique ; Fagard, Mathilde ; Gaudin, Valérie</creator><contributor>Zhang, Xiaoyu</contributor><creatorcontrib>Le Roux, Clémentine ; Del Prete, Stefania ; Boutet-Mercey, Stéphanie ; Perreau, François ; Balagué, Claudine ; Roby, Dominique ; Fagard, Mathilde ; Gaudin, Valérie ; Zhang, Xiaoyu</creatorcontrib><description>Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0099343</identifier><identifier>PMID: 24914891</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biology and Life Sciences ; Biosynthesis ; Botrytis ; Botrytis cinerea ; Cyclopentanes - metabolism ; Defense programs ; Deregulation ; Epigenetics ; Eukaryotes ; Gene expression ; Gene Expression Regulation, Plant ; Gene Ontology ; Genes ; Glucosinolates ; Glucosinolates - metabolism ; Health aspects ; Heterogeneous-Nuclear Ribonucleoproteins - genetics ; Heterogeneous-Nuclear Ribonucleoproteins - metabolism ; Homology ; Immune response ; Immune system ; Immunity ; Infections ; Innate immunity ; Jasmonic acid ; Life cycle engineering ; Life cycles ; Life Sciences ; Metabolites ; Models, Biological ; Mutants ; Mutation ; Mutation - genetics ; Oxylipins - metabolism ; Pathogens ; Pathways ; Physiological aspects ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant immunity ; Plant Immunity - genetics ; Proteins ; Pseudomonas syringae ; Pseudomonas syringae - physiology ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Salicylic acid ; Salicylic Acid - metabolism ; Secondary metabolites ; Signal Transduction - genetics ; Signaling ; Stress response ; Stress, Physiological - genetics ; Studies ; Transcriptome - genetics</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e99343-e99343</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Le Roux et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 Le Roux et al 2014 Le Roux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753</citedby><cites>FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753</cites><orcidid>0000-0001-7452-6337 ; 0000-0002-1356-5567 ; 0000-0001-7873-9866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1534520888/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1534520888?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24914891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01204050$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Zhang, Xiaoyu</contributor><creatorcontrib>Le Roux, Clémentine</creatorcontrib><creatorcontrib>Del Prete, Stefania</creatorcontrib><creatorcontrib>Boutet-Mercey, Stéphanie</creatorcontrib><creatorcontrib>Perreau, François</creatorcontrib><creatorcontrib>Balagué, Claudine</creatorcontrib><creatorcontrib>Roby, Dominique</creatorcontrib><creatorcontrib>Fagard, Mathilde</creatorcontrib><creatorcontrib>Gaudin, Valérie</creatorcontrib><title>The hnRNP-Q protein LIF2 participates in the plant immune response</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.</description><subject>Acids</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Botrytis</subject><subject>Botrytis cinerea</subject><subject>Cyclopentanes - metabolism</subject><subject>Defense programs</subject><subject>Deregulation</subject><subject>Epigenetics</subject><subject>Eukaryotes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>Glucosinolates</subject><subject>Glucosinolates - metabolism</subject><subject>Health aspects</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - genetics</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</subject><subject>Homology</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Infections</subject><subject>Innate immunity</subject><subject>Jasmonic acid</subject><subject>Life cycle engineering</subject><subject>Life cycles</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Models, Biological</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Oxylipins - metabolism</subject><subject>Pathogens</subject><subject>Pathways</subject><subject>Physiological aspects</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant immunity</subject><subject>Plant Immunity - genetics</subject><subject>Proteins</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - physiology</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Secondary metabolites</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>Studies</subject><subject>Transcriptome - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkLsIsXfcW4mlYmxShWDMbi1XMdpXCVxsJ0J_j1um03NtAuUi0THz_uej_gkyWsIZhDn8OPGDq6Tzay3nZ4BUBSY4CfJMSwwyhgC-OnB91HywvsNABRzxp4nR4gUkPACHiefbmqd1t3112_Z97R3NmjTpcvFBUp76YJRppdB-zQGQwT7RnYhNW07dDp12sfcXr9MnlWy8frV-D5Jfl58vjm_zJZXXxbn82WmcsRCRgstK16yUqOKAa2oArLAJaNcEUD4iuQEEkAlkBJiWeKq4hKqvIArihTIKT5J3u59-8Z6MbbvBaSYUAQ455FY7InSyo3onWml-yusNGIXsG4tdk01WjBQlpDTUhaAklhYTEUQpKykQHKWg-h1NmYbVq0ule6Ck83EdHrSmVqs7a2IPUC2K_d0b1A_kF3Ol2IbAxCBCINbGNkPYzJnfw_aB9Ear3QTx63tsOuRMkQhIhF99wB9fBIjtZaxWdNVNtaotqZiTiBnmEYoUrNHqPiUujUq3qvKxPhEcDoRRCboP2EtB-_F4sf1_7NXv6bs-wO21rIJtbfNEEy8YFOQ7EHlrPdOV_eThUBs1-JuGmK7FmJciyh7c_gz70V3e4D_AcrXBFM</recordid><startdate>20140610</startdate><enddate>20140610</enddate><creator>Le Roux, Clémentine</creator><creator>Del Prete, Stefania</creator><creator>Boutet-Mercey, Stéphanie</creator><creator>Perreau, François</creator><creator>Balagué, Claudine</creator><creator>Roby, Dominique</creator><creator>Fagard, Mathilde</creator><creator>Gaudin, Valérie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7452-6337</orcidid><orcidid>https://orcid.org/0000-0002-1356-5567</orcidid><orcidid>https://orcid.org/0000-0001-7873-9866</orcidid></search><sort><creationdate>20140610</creationdate><title>The hnRNP-Q protein LIF2 participates in the plant immune response</title><author>Le Roux, Clémentine ; Del Prete, Stefania ; Boutet-Mercey, Stéphanie ; Perreau, François ; Balagué, Claudine ; Roby, Dominique ; Fagard, Mathilde ; Gaudin, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Botrytis</topic><topic>Botrytis cinerea</topic><topic>Cyclopentanes - metabolism</topic><topic>Defense programs</topic><topic>Deregulation</topic><topic>Epigenetics</topic><topic>Eukaryotes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>Glucosinolates</topic><topic>Glucosinolates - metabolism</topic><topic>Health aspects</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - genetics</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</topic><topic>Homology</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Infections</topic><topic>Innate immunity</topic><topic>Jasmonic acid</topic><topic>Life cycle engineering</topic><topic>Life cycles</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Models, Biological</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Oxylipins - metabolism</topic><topic>Pathogens</topic><topic>Pathways</topic><topic>Physiological aspects</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant immunity</topic><topic>Plant Immunity - genetics</topic><topic>Proteins</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - physiology</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Secondary metabolites</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>Studies</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Roux, Clémentine</creatorcontrib><creatorcontrib>Del Prete, Stefania</creatorcontrib><creatorcontrib>Boutet-Mercey, Stéphanie</creatorcontrib><creatorcontrib>Perreau, François</creatorcontrib><creatorcontrib>Balagué, Claudine</creatorcontrib><creatorcontrib>Roby, Dominique</creatorcontrib><creatorcontrib>Fagard, Mathilde</creatorcontrib><creatorcontrib>Gaudin, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Roux, Clémentine</au><au>Del Prete, Stefania</au><au>Boutet-Mercey, Stéphanie</au><au>Perreau, François</au><au>Balagué, Claudine</au><au>Roby, Dominique</au><au>Fagard, Mathilde</au><au>Gaudin, Valérie</au><au>Zhang, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hnRNP-Q protein LIF2 participates in the plant immune response</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-10</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e99343</spage><epage>e99343</epage><pages>e99343-e99343</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24914891</pmid><doi>10.1371/journal.pone.0099343</doi><orcidid>https://orcid.org/0000-0001-7452-6337</orcidid><orcidid>https://orcid.org/0000-0002-1356-5567</orcidid><orcidid>https://orcid.org/0000-0001-7873-9866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-06, Vol.9 (6), p.e99343-e99343
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1534520888
source Publicly Available Content Database; PubMed Central
subjects Acids
Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biology and Life Sciences
Biosynthesis
Botrytis
Botrytis cinerea
Cyclopentanes - metabolism
Defense programs
Deregulation
Epigenetics
Eukaryotes
Gene expression
Gene Expression Regulation, Plant
Gene Ontology
Genes
Glucosinolates
Glucosinolates - metabolism
Health aspects
Heterogeneous-Nuclear Ribonucleoproteins - genetics
Heterogeneous-Nuclear Ribonucleoproteins - metabolism
Homology
Immune response
Immune system
Immunity
Infections
Innate immunity
Jasmonic acid
Life cycle engineering
Life cycles
Life Sciences
Metabolites
Models, Biological
Mutants
Mutation
Mutation - genetics
Oxylipins - metabolism
Pathogens
Pathways
Physiological aspects
Plant Diseases - genetics
Plant Diseases - microbiology
Plant immunity
Plant Immunity - genetics
Proteins
Pseudomonas syringae
Pseudomonas syringae - physiology
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Salicylic acid
Salicylic Acid - metabolism
Secondary metabolites
Signal Transduction - genetics
Signaling
Stress response
Stress, Physiological - genetics
Studies
Transcriptome - genetics
title The hnRNP-Q protein LIF2 participates in the plant immune response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hnRNP-Q%20protein%20LIF2%20participates%20in%20the%20plant%20immune%20response&rft.jtitle=PloS%20one&rft.au=Le%20Roux,%20Cl%C3%A9mentine&rft.date=2014-06-10&rft.volume=9&rft.issue=6&rft.spage=e99343&rft.epage=e99343&rft.pages=e99343-e99343&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0099343&rft_dat=%3Cgale_plos_%3EA418635883%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-59eaf8d6de2f60ec5c0a93d658c4048b4741405a0aa13ad3ff8a1c791b52c0753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1534520888&rft_id=info:pmid/24914891&rft_galeid=A418635883&rfr_iscdi=true