Loading…

MK2 and Fas receptor contribute to the severity of CNS demyelination

Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-)...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-06, Vol.9 (6), p.e100363
Main Authors: Tietz, Silvia M, Hofmann, Regina, Thomas, Tobias, Tackenberg, Björn, Gaestel, Matthias, Berghoff, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43
cites cdi_FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43
container_end_page
container_issue 6
container_start_page e100363
container_title PloS one
container_volume 9
creator Tietz, Silvia M
Hofmann, Regina
Thomas, Tobias
Tackenberg, Björn
Gaestel, Matthias
Berghoff, Martin
description Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-) mice we found a delayed onset of the disease and MK2-/- mice did not recover until day 24 after EAE induction. At this day a higher number of leukocytes in the CNS of MK2-/- mice was found. TNFα was not detectable in serum of MK2-/- mice in any stage of EAE, while high TNFα levels were found at day 16 in wild-type mice. Further investigation revealed an increased expression of FasR mRNA in leukocytes isolated from CNS of wild-type mice but not in MK2-/- mice, however in vitro stimulation of MK2-/- splenocytes with rmTNFα induced the expression of FasR. In addition, immunocomplexes between the apoptosis inhibitor cFlip and the FasR adapter molecule FADD were only detected in splenocytes of MK2-/- mice at day 24 after EAE induction. Moreover, the investigation of blood samples from relapsing-remitting multiple sclerosis patients revealed reduced FasR mRNA expression compared to healthy controls. Taken together, our data suggest that MK2 is a key regulatory inflammatory cytokines in EAE and multiple sclerosis. MK2-/- mice showed a lack of TNFα and thus might not undergo TNFα-induced up-regulation of FasR. This may prevent autoreactive leukocytes from apoptosis and may led to prolonged disease activity. The findings indicate a key role of MK2 and FasR in the regulation and limitation of the immune response in the CNS.
doi_str_mv 10.1371/journal.pone.0100363
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1540471107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417844135</galeid><doaj_id>oai_doaj_org_article_819a1d7fffba446e9be6f76d3029eb5b</doaj_id><sourcerecordid>A417844135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43</originalsourceid><addsrcrecordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHrh2_IE2FQcVgEgNerZvkuvWUxsV2JvrvcddsatAekB9iOd891z73ZNlzSqaUSfruyvW-g3a6cR1OCSWECfYgO6aKFRNREPbwYH-UPQnhipAZK4V4nB0VXAlOpDjOPnz9UuTQNfkZhNxjjZvofF67Lnpb9RHz6PK4wjzgNXobt7kz-fzbZd7geout7SBa1z3NHhloAz4bvifZz7OPP-afJ-cXnxbz0_NJLVQRJ6yUpDayUoBVVRS1KCgpG1lxVZbcIMyEkQZKlERRRphRCJKWhRIgeSMbzk6yl3vdTeuCHgwIms444ZJSIhOx2BONgyu98XYNfqsdWH1z4PxSg4-2blGXVAFtpDGmAs4FqgpTf9EwUiisZlXSej9066s1NjUmT6AdiY7_dHall-5aJ2eJ4iQJvBkEvPvdY4h6bUONbQsduv7m3pSVTFGa0Ff_oPe_bqCWkB5gO-NS33onqk85lSVPerNETe-h0kozs2myaGw6HxW8HRXspo9_4hL6EPTi8vv_sxe_xuzrA3aF0MZVcG2_i0wYg3wP1t6F4NHcmUyJ3oX91g29C7sewp7KXhwO6K7oNt3sLwsX9_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540471107</pqid></control><display><type>article</type><title>MK2 and Fas receptor contribute to the severity of CNS demyelination</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Tietz, Silvia M ; Hofmann, Regina ; Thomas, Tobias ; Tackenberg, Björn ; Gaestel, Matthias ; Berghoff, Martin</creator><contributor>Linker, Ralf Andreas</contributor><creatorcontrib>Tietz, Silvia M ; Hofmann, Regina ; Thomas, Tobias ; Tackenberg, Björn ; Gaestel, Matthias ; Berghoff, Martin ; Linker, Ralf Andreas</creatorcontrib><description>Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-) mice we found a delayed onset of the disease and MK2-/- mice did not recover until day 24 after EAE induction. At this day a higher number of leukocytes in the CNS of MK2-/- mice was found. TNFα was not detectable in serum of MK2-/- mice in any stage of EAE, while high TNFα levels were found at day 16 in wild-type mice. Further investigation revealed an increased expression of FasR mRNA in leukocytes isolated from CNS of wild-type mice but not in MK2-/- mice, however in vitro stimulation of MK2-/- splenocytes with rmTNFα induced the expression of FasR. In addition, immunocomplexes between the apoptosis inhibitor cFlip and the FasR adapter molecule FADD were only detected in splenocytes of MK2-/- mice at day 24 after EAE induction. Moreover, the investigation of blood samples from relapsing-remitting multiple sclerosis patients revealed reduced FasR mRNA expression compared to healthy controls. Taken together, our data suggest that MK2 is a key regulatory inflammatory cytokines in EAE and multiple sclerosis. MK2-/- mice showed a lack of TNFα and thus might not undergo TNFα-induced up-regulation of FasR. This may prevent autoreactive leukocytes from apoptosis and may led to prolonged disease activity. The findings indicate a key role of MK2 and FasR in the regulation and limitation of the immune response in the CNS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0100363</identifier><identifier>PMID: 24964076</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adapters ; Adult ; Analysis ; Animal models ; Animals ; Apoptosis ; Apoptosis - drug effects ; Autoimmune diseases ; Autoimmunity ; Biology and Life Sciences ; c-FLIP protein ; Cell Count ; Central nervous system ; Central Nervous System - immunology ; Central Nervous System - metabolism ; Cytokines ; Degenerative diseases ; Demyelination ; Encephalomyelitis, Autoimmune, Experimental - blood ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Experimental allergic encephalomyelitis ; FADD protein ; fas Receptor - blood ; fas Receptor - genetics ; fas Receptor - metabolism ; Female ; Gene expression ; Humans ; Immune response ; Immune system ; Inflammation ; Intracellular Signaling Peptides and Proteins - deficiency ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinases ; Leukocytes ; Leukocytes - cytology ; Leukocytes - drug effects ; Leukocytes - metabolism ; Male ; Medicine and Health Sciences ; Mice ; Multiple sclerosis ; Multiple Sclerosis - blood ; Multiple Sclerosis - immunology ; Multiple Sclerosis - metabolism ; Multiple Sclerosis - physiopathology ; Protein Serine-Threonine Kinases - deficiency ; Protein Serine-Threonine Kinases - metabolism ; Recurrence ; Research and Analysis Methods ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Spleen - cytology ; Splenocytes ; Tumor necrosis factor ; Tumor Necrosis Factor-alpha - pharmacology ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Up-Regulation - drug effects</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e100363</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Tietz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Tietz et al 2014 Tietz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43</citedby><cites>FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1540471107/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1540471107?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24964076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Linker, Ralf Andreas</contributor><creatorcontrib>Tietz, Silvia M</creatorcontrib><creatorcontrib>Hofmann, Regina</creatorcontrib><creatorcontrib>Thomas, Tobias</creatorcontrib><creatorcontrib>Tackenberg, Björn</creatorcontrib><creatorcontrib>Gaestel, Matthias</creatorcontrib><creatorcontrib>Berghoff, Martin</creatorcontrib><title>MK2 and Fas receptor contribute to the severity of CNS demyelination</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-) mice we found a delayed onset of the disease and MK2-/- mice did not recover until day 24 after EAE induction. At this day a higher number of leukocytes in the CNS of MK2-/- mice was found. TNFα was not detectable in serum of MK2-/- mice in any stage of EAE, while high TNFα levels were found at day 16 in wild-type mice. Further investigation revealed an increased expression of FasR mRNA in leukocytes isolated from CNS of wild-type mice but not in MK2-/- mice, however in vitro stimulation of MK2-/- splenocytes with rmTNFα induced the expression of FasR. In addition, immunocomplexes between the apoptosis inhibitor cFlip and the FasR adapter molecule FADD were only detected in splenocytes of MK2-/- mice at day 24 after EAE induction. Moreover, the investigation of blood samples from relapsing-remitting multiple sclerosis patients revealed reduced FasR mRNA expression compared to healthy controls. Taken together, our data suggest that MK2 is a key regulatory inflammatory cytokines in EAE and multiple sclerosis. MK2-/- mice showed a lack of TNFα and thus might not undergo TNFα-induced up-regulation of FasR. This may prevent autoreactive leukocytes from apoptosis and may led to prolonged disease activity. The findings indicate a key role of MK2 and FasR in the regulation and limitation of the immune response in the CNS.</description><subject>Adapters</subject><subject>Adult</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autoimmune diseases</subject><subject>Autoimmunity</subject><subject>Biology and Life Sciences</subject><subject>c-FLIP protein</subject><subject>Cell Count</subject><subject>Central nervous system</subject><subject>Central Nervous System - immunology</subject><subject>Central Nervous System - metabolism</subject><subject>Cytokines</subject><subject>Degenerative diseases</subject><subject>Demyelination</subject><subject>Encephalomyelitis, Autoimmune, Experimental - blood</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Experimental allergic encephalomyelitis</subject><subject>FADD protein</subject><subject>fas Receptor - blood</subject><subject>fas Receptor - genetics</subject><subject>fas Receptor - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Intracellular Signaling Peptides and Proteins - deficiency</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinases</subject><subject>Leukocytes</subject><subject>Leukocytes - cytology</subject><subject>Leukocytes - drug effects</subject><subject>Leukocytes - metabolism</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - blood</subject><subject>Multiple Sclerosis - immunology</subject><subject>Multiple Sclerosis - metabolism</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>Protein Serine-Threonine Kinases - deficiency</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Recurrence</subject><subject>Research and Analysis Methods</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Spleen - cytology</subject><subject>Splenocytes</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Up-Regulation - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHrh2_IE2FQcVgEgNerZvkuvWUxsV2JvrvcddsatAekB9iOd891z73ZNlzSqaUSfruyvW-g3a6cR1OCSWECfYgO6aKFRNREPbwYH-UPQnhipAZK4V4nB0VXAlOpDjOPnz9UuTQNfkZhNxjjZvofF67Lnpb9RHz6PK4wjzgNXobt7kz-fzbZd7geout7SBa1z3NHhloAz4bvifZz7OPP-afJ-cXnxbz0_NJLVQRJ6yUpDayUoBVVRS1KCgpG1lxVZbcIMyEkQZKlERRRphRCJKWhRIgeSMbzk6yl3vdTeuCHgwIms444ZJSIhOx2BONgyu98XYNfqsdWH1z4PxSg4-2blGXVAFtpDGmAs4FqgpTf9EwUiisZlXSej9066s1NjUmT6AdiY7_dHall-5aJ2eJ4iQJvBkEvPvdY4h6bUONbQsduv7m3pSVTFGa0Ff_oPe_bqCWkB5gO-NS33onqk85lSVPerNETe-h0kozs2myaGw6HxW8HRXspo9_4hL6EPTi8vv_sxe_xuzrA3aF0MZVcG2_i0wYg3wP1t6F4NHcmUyJ3oX91g29C7sewp7KXhwO6K7oNt3sLwsX9_Q</recordid><startdate>20140625</startdate><enddate>20140625</enddate><creator>Tietz, Silvia M</creator><creator>Hofmann, Regina</creator><creator>Thomas, Tobias</creator><creator>Tackenberg, Björn</creator><creator>Gaestel, Matthias</creator><creator>Berghoff, Martin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140625</creationdate><title>MK2 and Fas receptor contribute to the severity of CNS demyelination</title><author>Tietz, Silvia M ; Hofmann, Regina ; Thomas, Tobias ; Tackenberg, Björn ; Gaestel, Matthias ; Berghoff, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adapters</topic><topic>Adult</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autoimmune diseases</topic><topic>Autoimmunity</topic><topic>Biology and Life Sciences</topic><topic>c-FLIP protein</topic><topic>Cell Count</topic><topic>Central nervous system</topic><topic>Central Nervous System - immunology</topic><topic>Central Nervous System - metabolism</topic><topic>Cytokines</topic><topic>Degenerative diseases</topic><topic>Demyelination</topic><topic>Encephalomyelitis, Autoimmune, Experimental - blood</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Experimental allergic encephalomyelitis</topic><topic>FADD protein</topic><topic>fas Receptor - blood</topic><topic>fas Receptor - genetics</topic><topic>fas Receptor - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Intracellular Signaling Peptides and Proteins - deficiency</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinases</topic><topic>Leukocytes</topic><topic>Leukocytes - cytology</topic><topic>Leukocytes - drug effects</topic><topic>Leukocytes - metabolism</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - blood</topic><topic>Multiple Sclerosis - immunology</topic><topic>Multiple Sclerosis - metabolism</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>Protein Serine-Threonine Kinases - deficiency</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Recurrence</topic><topic>Research and Analysis Methods</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Spleen - cytology</topic><topic>Splenocytes</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tietz, Silvia M</creatorcontrib><creatorcontrib>Hofmann, Regina</creatorcontrib><creatorcontrib>Thomas, Tobias</creatorcontrib><creatorcontrib>Tackenberg, Björn</creatorcontrib><creatorcontrib>Gaestel, Matthias</creatorcontrib><creatorcontrib>Berghoff, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tietz, Silvia M</au><au>Hofmann, Regina</au><au>Thomas, Tobias</au><au>Tackenberg, Björn</au><au>Gaestel, Matthias</au><au>Berghoff, Martin</au><au>Linker, Ralf Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MK2 and Fas receptor contribute to the severity of CNS demyelination</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-25</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e100363</spage><pages>e100363-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-) mice we found a delayed onset of the disease and MK2-/- mice did not recover until day 24 after EAE induction. At this day a higher number of leukocytes in the CNS of MK2-/- mice was found. TNFα was not detectable in serum of MK2-/- mice in any stage of EAE, while high TNFα levels were found at day 16 in wild-type mice. Further investigation revealed an increased expression of FasR mRNA in leukocytes isolated from CNS of wild-type mice but not in MK2-/- mice, however in vitro stimulation of MK2-/- splenocytes with rmTNFα induced the expression of FasR. In addition, immunocomplexes between the apoptosis inhibitor cFlip and the FasR adapter molecule FADD were only detected in splenocytes of MK2-/- mice at day 24 after EAE induction. Moreover, the investigation of blood samples from relapsing-remitting multiple sclerosis patients revealed reduced FasR mRNA expression compared to healthy controls. Taken together, our data suggest that MK2 is a key regulatory inflammatory cytokines in EAE and multiple sclerosis. MK2-/- mice showed a lack of TNFα and thus might not undergo TNFα-induced up-regulation of FasR. This may prevent autoreactive leukocytes from apoptosis and may led to prolonged disease activity. The findings indicate a key role of MK2 and FasR in the regulation and limitation of the immune response in the CNS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24964076</pmid><doi>10.1371/journal.pone.0100363</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-06, Vol.9 (6), p.e100363
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1540471107
source PubMed Central(OpenAccess); Publicly Available Content (ProQuest)
subjects Adapters
Adult
Analysis
Animal models
Animals
Apoptosis
Apoptosis - drug effects
Autoimmune diseases
Autoimmunity
Biology and Life Sciences
c-FLIP protein
Cell Count
Central nervous system
Central Nervous System - immunology
Central Nervous System - metabolism
Cytokines
Degenerative diseases
Demyelination
Encephalomyelitis, Autoimmune, Experimental - blood
Encephalomyelitis, Autoimmune, Experimental - immunology
Encephalomyelitis, Autoimmune, Experimental - metabolism
Experimental allergic encephalomyelitis
FADD protein
fas Receptor - blood
fas Receptor - genetics
fas Receptor - metabolism
Female
Gene expression
Humans
Immune response
Immune system
Inflammation
Intracellular Signaling Peptides and Proteins - deficiency
Intracellular Signaling Peptides and Proteins - metabolism
Kinases
Leukocytes
Leukocytes - cytology
Leukocytes - drug effects
Leukocytes - metabolism
Male
Medicine and Health Sciences
Mice
Multiple sclerosis
Multiple Sclerosis - blood
Multiple Sclerosis - immunology
Multiple Sclerosis - metabolism
Multiple Sclerosis - physiopathology
Protein Serine-Threonine Kinases - deficiency
Protein Serine-Threonine Kinases - metabolism
Recurrence
Research and Analysis Methods
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Spleen - cytology
Splenocytes
Tumor necrosis factor
Tumor Necrosis Factor-alpha - pharmacology
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Up-Regulation - drug effects
title MK2 and Fas receptor contribute to the severity of CNS demyelination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MK2%20and%20Fas%20receptor%20contribute%20to%20the%20severity%20of%20CNS%20demyelination&rft.jtitle=PloS%20one&rft.au=Tietz,%20Silvia%20M&rft.date=2014-06-25&rft.volume=9&rft.issue=6&rft.spage=e100363&rft.pages=e100363-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0100363&rft_dat=%3Cgale_plos_%3EA417844135%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-3870cf7b9aebb22c62108d7b49884fea56f7fa8e7091303f9ea718296a74d7d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1540471107&rft_id=info:pmid/24964076&rft_galeid=A417844135&rfr_iscdi=true