Loading…

Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations

Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-07, Vol.9 (7), p.e101663-e101663
Main Authors: Zhen, Yunmei, Qin, Guangrong, Luo, Cheng, Jiang, Hualiang, Yu, Kunqian, Chen, Guanghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3
cites cdi_FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3
container_end_page e101663
container_issue 7
container_start_page e101663
container_title PloS one
container_volume 9
creator Zhen, Yunmei
Qin, Guangrong
Luo, Cheng
Jiang, Hualiang
Yu, Kunqian
Chen, Guanghui
description Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.
doi_str_mv 10.1371/journal.pone.0101663
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1543731027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418634620</galeid><doaj_id>oai_doaj_org_article_82480d10921c4d0c83968cdebfd5449d</doaj_id><sourcerecordid>A418634620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJwkc7fcW6QpjFGpZWJAbu1HMdpXTl2Fydo5dfjttnUoF0gX9g6fs57fI7fJHkNwRTiHJ6sfN86aadr7_QUQAAZw0-SY1hglDEE8NOD81HyIoQVABRzxp4nR4gCgHGBj5Ob87u19a1xi7Rb6vR69u0iU7KTdvNHV2lfmtvedMalXStdqHWbNlotpTOhSctNOv-cSlel3-cn83mqpFW9lZ3xLrxMntXSBv1q2CfJry_nP8--ZpdXF7Oz08tMsQJ1GQecc5rTss4hhZSqAgGFZIlzCiFhjCKGcsrKUimFeFmXTFNJioKhSjJY1niSvN3rxiaCGEYSBKQE5xgClEditicqL1di3ZpGthvhpRG7gG8XQradUVYLjggHFQQFgopUQHFcMK4qXdYVJaSootanoVpfNrpS2sWx2JHo-MaZpVj434IAzgpMo8CHQaD1t70OnWhMUNpa6bTvd-8mGGHKUETf_YM-3t1ALWRswLjax7pqKypOCeQMk-33T5LpI1RclW6Miv6pTYyPEj6OEiLT6btuIfsQxOzH9f-zVzdj9v0Bu9TSdsvgbb_zzBgke1C1PoRW1w9DhkBs7X8_DbG1vxjsH9PeHH7QQ9K93_FfcRj9GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543731027</pqid></control><display><type>article</type><title>Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhen, Yunmei ; Qin, Guangrong ; Luo, Cheng ; Jiang, Hualiang ; Yu, Kunqian ; Chen, Guanghui</creator><contributor>Salsbury, Freddie</contributor><creatorcontrib>Zhen, Yunmei ; Qin, Guangrong ; Luo, Cheng ; Jiang, Hualiang ; Yu, Kunqian ; Chen, Guanghui ; Salsbury, Freddie</creatorcontrib><description>Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0101663</identifier><identifier>PMID: 25003393</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Catalysis ; Chemistry ; Computer applications ; Computer simulation ; Conformation ; Energy ; Enzymes ; Laboratories ; Ligases ; Lysine ; Mathematical models ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular modelling ; Physics ; Protein Binding ; Protein Conformation ; Proteins ; Proteomics ; Quantum mechanics ; R&amp;D ; Research &amp; development ; RING Finger Domains ; Simulation ; Small Ubiquitin-Related Modifier Proteins - chemistry ; Small Ubiquitin-Related Modifier Proteins - metabolism ; Substrate Specificity ; Substrates ; Three dimensional models ; Ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - metabolism ; Ubiquitin-Conjugating Enzymes - chemistry ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e101663-e101663</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zhen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zhen et al 2014 Zhen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3</citedby><cites>FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1543731027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1543731027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25003393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Salsbury, Freddie</contributor><creatorcontrib>Zhen, Yunmei</creatorcontrib><creatorcontrib>Qin, Guangrong</creatorcontrib><creatorcontrib>Luo, Cheng</creatorcontrib><creatorcontrib>Jiang, Hualiang</creatorcontrib><creatorcontrib>Yu, Kunqian</creatorcontrib><creatorcontrib>Chen, Guanghui</creatorcontrib><title>Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.</description><subject>Biology and Life Sciences</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Conformation</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Laboratories</subject><subject>Ligases</subject><subject>Lysine</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>Physics</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Quantum mechanics</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>RING Finger Domains</subject><subject>Simulation</subject><subject>Small Ubiquitin-Related Modifier Proteins - chemistry</subject><subject>Small Ubiquitin-Related Modifier Proteins - metabolism</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Three dimensional models</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Conjugating Enzymes - chemistry</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJwkc7fcW6QpjFGpZWJAbu1HMdpXTl2Fydo5dfjttnUoF0gX9g6fs57fI7fJHkNwRTiHJ6sfN86aadr7_QUQAAZw0-SY1hglDEE8NOD81HyIoQVABRzxp4nR4gCgHGBj5Ob87u19a1xi7Rb6vR69u0iU7KTdvNHV2lfmtvedMalXStdqHWbNlotpTOhSctNOv-cSlel3-cn83mqpFW9lZ3xLrxMntXSBv1q2CfJry_nP8--ZpdXF7Oz08tMsQJ1GQecc5rTss4hhZSqAgGFZIlzCiFhjCKGcsrKUimFeFmXTFNJioKhSjJY1niSvN3rxiaCGEYSBKQE5xgClEditicqL1di3ZpGthvhpRG7gG8XQradUVYLjggHFQQFgopUQHFcMK4qXdYVJaSootanoVpfNrpS2sWx2JHo-MaZpVj434IAzgpMo8CHQaD1t70OnWhMUNpa6bTvd-8mGGHKUETf_YM-3t1ALWRswLjax7pqKypOCeQMk-33T5LpI1RclW6Miv6pTYyPEj6OEiLT6btuIfsQxOzH9f-zVzdj9v0Bu9TSdsvgbb_zzBgke1C1PoRW1w9DhkBs7X8_DbG1vxjsH9PeHH7QQ9K93_FfcRj9GQ</recordid><startdate>20140708</startdate><enddate>20140708</enddate><creator>Zhen, Yunmei</creator><creator>Qin, Guangrong</creator><creator>Luo, Cheng</creator><creator>Jiang, Hualiang</creator><creator>Yu, Kunqian</creator><creator>Chen, Guanghui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140708</creationdate><title>Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations</title><author>Zhen, Yunmei ; Qin, Guangrong ; Luo, Cheng ; Jiang, Hualiang ; Yu, Kunqian ; Chen, Guanghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biology and Life Sciences</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Conformation</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Laboratories</topic><topic>Ligases</topic><topic>Lysine</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>Physics</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Quantum mechanics</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>RING Finger Domains</topic><topic>Simulation</topic><topic>Small Ubiquitin-Related Modifier Proteins - chemistry</topic><topic>Small Ubiquitin-Related Modifier Proteins - metabolism</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Three dimensional models</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Conjugating Enzymes - chemistry</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhen, Yunmei</creatorcontrib><creatorcontrib>Qin, Guangrong</creatorcontrib><creatorcontrib>Luo, Cheng</creatorcontrib><creatorcontrib>Jiang, Hualiang</creatorcontrib><creatorcontrib>Yu, Kunqian</creatorcontrib><creatorcontrib>Chen, Guanghui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhen, Yunmei</au><au>Qin, Guangrong</au><au>Luo, Cheng</au><au>Jiang, Hualiang</au><au>Yu, Kunqian</au><au>Chen, Guanghui</au><au>Salsbury, Freddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-08</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e101663</spage><epage>e101663</epage><pages>e101663-e101663</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25003393</pmid><doi>10.1371/journal.pone.0101663</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-07, Vol.9 (7), p.e101663-e101663
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1543731027
source Publicly Available Content Database; PubMed Central
subjects Biology and Life Sciences
Catalysis
Chemistry
Computer applications
Computer simulation
Conformation
Energy
Enzymes
Laboratories
Ligases
Lysine
Mathematical models
Models, Molecular
Molecular dynamics
Molecular Dynamics Simulation
Molecular modelling
Physics
Protein Binding
Protein Conformation
Proteins
Proteomics
Quantum mechanics
R&D
Research & development
RING Finger Domains
Simulation
Small Ubiquitin-Related Modifier Proteins - chemistry
Small Ubiquitin-Related Modifier Proteins - metabolism
Substrate Specificity
Substrates
Three dimensional models
Ubiquitin
Ubiquitin - chemistry
Ubiquitin - metabolism
Ubiquitin-Conjugating Enzymes - chemistry
Ubiquitin-Conjugating Enzymes - metabolism
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
title Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20RING-catalyzed%20ubiquitin%20transfer%20mechanism%20by%20MD%20and%20QM/MM%20calculations&rft.jtitle=PloS%20one&rft.au=Zhen,%20Yunmei&rft.date=2014-07-08&rft.volume=9&rft.issue=7&rft.spage=e101663&rft.epage=e101663&rft.pages=e101663-e101663&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0101663&rft_dat=%3Cgale_plos_%3EA418634620%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-80888575bf715155c920c2ab375114665262756bbccc28bfb6e5a49962da61bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543731027&rft_id=info:pmid/25003393&rft_galeid=A418634620&rfr_iscdi=true