Loading…
Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations
Plasma membrane Ca(2+)-ATPase (PMCA) by extruding Ca(2+) outside the cell, actively participates in the regulation of intracellular Ca(2+) concentration. Acting as Ca(2+)/H(+) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in...
Saved in:
Published in: | PloS one 2014-07, Vol.9 (7), p.e102352-e102352 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53 |
container_end_page | e102352 |
container_issue | 7 |
container_start_page | e102352 |
container_title | PloS one |
container_volume | 9 |
creator | Boczek, Tomasz Lisek, Malwina Ferenc, Bozena Kowalski, Antoni Stepinski, Dariusz Wiktorska, Magdalena Zylinska, Ludmila |
description | Plasma membrane Ca(2+)-ATPase (PMCA) by extruding Ca(2+) outside the cell, actively participates in the regulation of intracellular Ca(2+) concentration. Acting as Ca(2+)/H(+) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca(2+) overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca(2+) clearance and partially attenuated cellular acidification during KCl-stimulated Ca(2+) influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca(2+) overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca(2+)-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient. |
doi_str_mv | 10.1371/journal.pone.0102352 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1544513156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e97351546fb446cf8e75dd8ef30a873e</doaj_id><sourcerecordid>3369762851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO-CLJrPmcyL4WyqC0U3If6HDKZm22WTDIms4X-Hv-o2d1pacWnXO4959xzb25VvSd4SVhDvm7jLgXtl2MMsMQEUyboi-qUtIwuaorZyyfxSfUm5y3Ggsm6fl2dUIEJZ6w9rf6svc6DRgMMXdIB0ErTL4uLm7XOgFyONqYhIxOHMWY3uRhQgs3O6wlKFrwvYULjJbqNA8Q86ewycgH1zlpIECanJxc2aL0i9IA_VEs7HQIk1MMIoS8wVITN_RRz9M4cPCDwcKf3HfPb6pXVPsO7-T2rfn3_drO6XFz__HG1urheGC7qacFp01IqWiJkraEzpgEmmlqAMcAZaXgrdScpdBLjXjNrmhYbYXEnrZDUCnZWfTzqjj5mNe83KyI4F4QRURfE1RHRR71VY3KDTvcqaqcOiZg2SqfJGQ8K2oaJQq1tx3ltrIRG9L0Ey7CWDYOidT5323UD9KZsIWn_TPR5JbhbtYl3iuO2-KFF4PMskOLvHeRJDS7vd1y-Me4OvgWRWDZtgX76B_r_6fgRZVLMOYF9NEOw2t_cA0vtb07NN1doH54O8kh6ODL2F21j1yE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544513156</pqid></control><display><type>article</type><title>Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Boczek, Tomasz ; Lisek, Malwina ; Ferenc, Bozena ; Kowalski, Antoni ; Stepinski, Dariusz ; Wiktorska, Magdalena ; Zylinska, Ludmila</creator><contributor>Zazueta, Cecilia</contributor><creatorcontrib>Boczek, Tomasz ; Lisek, Malwina ; Ferenc, Bozena ; Kowalski, Antoni ; Stepinski, Dariusz ; Wiktorska, Magdalena ; Zylinska, Ludmila ; Zazueta, Cecilia</creatorcontrib><description>Plasma membrane Ca(2+)-ATPase (PMCA) by extruding Ca(2+) outside the cell, actively participates in the regulation of intracellular Ca(2+) concentration. Acting as Ca(2+)/H(+) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca(2+) overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca(2+) clearance and partially attenuated cellular acidification during KCl-stimulated Ca(2+) influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca(2+) overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca(2+)-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0102352</identifier><identifier>PMID: 25014339</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; Adenosine triphosphatase ; Animals ; Biology and Life Sciences ; Bongkrekic Acid - pharmacology ; Ca2+-transporting ATPase ; Ca2+/H+-exchanging ATPase ; Calcium (intracellular) ; Calcium (mitochondrial) ; Calcium - metabolism ; Calcium influx ; Calcium ions ; Calcium permeability ; Cell Differentiation ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Chlorides ; Cyclosporine - pharmacology ; Cytosol - drug effects ; Cytosol - metabolism ; Electrochemistry ; Enzyme Inhibitors - pharmacology ; Extrusion ; Gene Expression Regulation ; Homeostasis ; Homeostasis - physiology ; Hydrogen ions ; Hydrogen-Ion Concentration - drug effects ; Intracellular ; Ion Transport - drug effects ; Isoforms ; Localization ; Membrane composition ; Membrane permeability ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potentials - drug effects ; Metabolism ; Metabolites ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Membrane Transport Proteins - antagonists & inhibitors ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial permeability transition pore ; Na+/Ca2+ exchanger ; Neurochemistry ; Neurons ; PC12 Cells ; Permeability ; pH effects ; Pheochromocytoma cells ; Phosphorylation ; Plasma ; Plasma Membrane Calcium-Transporting ATPases - antagonists & inhibitors ; Plasma Membrane Calcium-Transporting ATPases - genetics ; Plasma Membrane Calcium-Transporting ATPases - metabolism ; Potassium chloride ; Potassium Chloride - pharmacology ; Preservation ; Protons ; Rats ; Rodents ; Signal Transduction ; Steady state</subject><ispartof>PloS one, 2014-07, Vol.9 (7), p.e102352-e102352</ispartof><rights>2014 Boczek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Boczek et al 2014 Boczek et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53</citedby><cites>FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1544513156/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1544513156?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25014339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zazueta, Cecilia</contributor><creatorcontrib>Boczek, Tomasz</creatorcontrib><creatorcontrib>Lisek, Malwina</creatorcontrib><creatorcontrib>Ferenc, Bozena</creatorcontrib><creatorcontrib>Kowalski, Antoni</creatorcontrib><creatorcontrib>Stepinski, Dariusz</creatorcontrib><creatorcontrib>Wiktorska, Magdalena</creatorcontrib><creatorcontrib>Zylinska, Ludmila</creatorcontrib><title>Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Plasma membrane Ca(2+)-ATPase (PMCA) by extruding Ca(2+) outside the cell, actively participates in the regulation of intracellular Ca(2+) concentration. Acting as Ca(2+)/H(+) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca(2+) overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca(2+) clearance and partially attenuated cellular acidification during KCl-stimulated Ca(2+) influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca(2+) overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca(2+)-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.</description><subject>Acidification</subject><subject>Adenosine triphosphatase</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Bongkrekic Acid - pharmacology</subject><subject>Ca2+-transporting ATPase</subject><subject>Ca2+/H+-exchanging ATPase</subject><subject>Calcium (intracellular)</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium - metabolism</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium permeability</subject><subject>Cell Differentiation</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Chlorides</subject><subject>Cyclosporine - pharmacology</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>Electrochemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Extrusion</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Hydrogen ions</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Intracellular</subject><subject>Ion Transport - drug effects</subject><subject>Isoforms</subject><subject>Localization</subject><subject>Membrane composition</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potentials - drug effects</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membrane Transport Proteins - antagonists & inhibitors</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial permeability transition pore</subject><subject>Na+/Ca2+ exchanger</subject><subject>Neurochemistry</subject><subject>Neurons</subject><subject>PC12 Cells</subject><subject>Permeability</subject><subject>pH effects</subject><subject>Pheochromocytoma cells</subject><subject>Phosphorylation</subject><subject>Plasma</subject><subject>Plasma Membrane Calcium-Transporting ATPases - antagonists & inhibitors</subject><subject>Plasma Membrane Calcium-Transporting ATPases - genetics</subject><subject>Plasma Membrane Calcium-Transporting ATPases - metabolism</subject><subject>Potassium chloride</subject><subject>Potassium Chloride - pharmacology</subject><subject>Preservation</subject><subject>Protons</subject><subject>Rats</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Steady state</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO-CLJrPmcyL4WyqC0U3If6HDKZm22WTDIms4X-Hv-o2d1pacWnXO4959xzb25VvSd4SVhDvm7jLgXtl2MMsMQEUyboi-qUtIwuaorZyyfxSfUm5y3Ggsm6fl2dUIEJZ6w9rf6svc6DRgMMXdIB0ErTL4uLm7XOgFyONqYhIxOHMWY3uRhQgs3O6wlKFrwvYULjJbqNA8Q86ewycgH1zlpIECanJxc2aL0i9IA_VEs7HQIk1MMIoS8wVITN_RRz9M4cPCDwcKf3HfPb6pXVPsO7-T2rfn3_drO6XFz__HG1urheGC7qacFp01IqWiJkraEzpgEmmlqAMcAZaXgrdScpdBLjXjNrmhYbYXEnrZDUCnZWfTzqjj5mNe83KyI4F4QRURfE1RHRR71VY3KDTvcqaqcOiZg2SqfJGQ8K2oaJQq1tx3ltrIRG9L0Ey7CWDYOidT5323UD9KZsIWn_TPR5JbhbtYl3iuO2-KFF4PMskOLvHeRJDS7vd1y-Me4OvgWRWDZtgX76B_r_6fgRZVLMOYF9NEOw2t_cA0vtb07NN1doH54O8kh6ODL2F21j1yE</recordid><startdate>20140711</startdate><enddate>20140711</enddate><creator>Boczek, Tomasz</creator><creator>Lisek, Malwina</creator><creator>Ferenc, Bozena</creator><creator>Kowalski, Antoni</creator><creator>Stepinski, Dariusz</creator><creator>Wiktorska, Magdalena</creator><creator>Zylinska, Ludmila</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140711</creationdate><title>Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations</title><author>Boczek, Tomasz ; Lisek, Malwina ; Ferenc, Bozena ; Kowalski, Antoni ; Stepinski, Dariusz ; Wiktorska, Magdalena ; Zylinska, Ludmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acidification</topic><topic>Adenosine triphosphatase</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Bongkrekic Acid - pharmacology</topic><topic>Ca2+-transporting ATPase</topic><topic>Ca2+/H+-exchanging ATPase</topic><topic>Calcium (intracellular)</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium - metabolism</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium permeability</topic><topic>Cell Differentiation</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Chlorides</topic><topic>Cyclosporine - pharmacology</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>Electrochemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Extrusion</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Hydrogen ions</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Intracellular</topic><topic>Ion Transport - drug effects</topic><topic>Isoforms</topic><topic>Localization</topic><topic>Membrane composition</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potentials - drug effects</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membrane Transport Proteins - antagonists & inhibitors</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial permeability transition pore</topic><topic>Na+/Ca2+ exchanger</topic><topic>Neurochemistry</topic><topic>Neurons</topic><topic>PC12 Cells</topic><topic>Permeability</topic><topic>pH effects</topic><topic>Pheochromocytoma cells</topic><topic>Phosphorylation</topic><topic>Plasma</topic><topic>Plasma Membrane Calcium-Transporting ATPases - antagonists & inhibitors</topic><topic>Plasma Membrane Calcium-Transporting ATPases - genetics</topic><topic>Plasma Membrane Calcium-Transporting ATPases - metabolism</topic><topic>Potassium chloride</topic><topic>Potassium Chloride - pharmacology</topic><topic>Preservation</topic><topic>Protons</topic><topic>Rats</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boczek, Tomasz</creatorcontrib><creatorcontrib>Lisek, Malwina</creatorcontrib><creatorcontrib>Ferenc, Bozena</creatorcontrib><creatorcontrib>Kowalski, Antoni</creatorcontrib><creatorcontrib>Stepinski, Dariusz</creatorcontrib><creatorcontrib>Wiktorska, Magdalena</creatorcontrib><creatorcontrib>Zylinska, Ludmila</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boczek, Tomasz</au><au>Lisek, Malwina</au><au>Ferenc, Bozena</au><au>Kowalski, Antoni</au><au>Stepinski, Dariusz</au><au>Wiktorska, Magdalena</au><au>Zylinska, Ludmila</au><au>Zazueta, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-07-11</date><risdate>2014</risdate><volume>9</volume><issue>7</issue><spage>e102352</spage><epage>e102352</epage><pages>e102352-e102352</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Plasma membrane Ca(2+)-ATPase (PMCA) by extruding Ca(2+) outside the cell, actively participates in the regulation of intracellular Ca(2+) concentration. Acting as Ca(2+)/H(+) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca(2+) overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca(2+) clearance and partially attenuated cellular acidification during KCl-stimulated Ca(2+) influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca(2+) overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca(2+)-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25014339</pmid><doi>10.1371/journal.pone.0102352</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-07, Vol.9 (7), p.e102352-e102352 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1544513156 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Acidification Adenosine triphosphatase Animals Biology and Life Sciences Bongkrekic Acid - pharmacology Ca2+-transporting ATPase Ca2+/H+-exchanging ATPase Calcium (intracellular) Calcium (mitochondrial) Calcium - metabolism Calcium influx Calcium ions Calcium permeability Cell Differentiation Cell Membrane - drug effects Cell Membrane - metabolism Chlorides Cyclosporine - pharmacology Cytosol - drug effects Cytosol - metabolism Electrochemistry Enzyme Inhibitors - pharmacology Extrusion Gene Expression Regulation Homeostasis Homeostasis - physiology Hydrogen ions Hydrogen-Ion Concentration - drug effects Intracellular Ion Transport - drug effects Isoforms Localization Membrane composition Membrane permeability Membrane potential Membrane Potential, Mitochondrial - drug effects Membrane Potentials - drug effects Metabolism Metabolites Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial DNA Mitochondrial Membrane Transport Proteins - antagonists & inhibitors Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial permeability transition pore Na+/Ca2+ exchanger Neurochemistry Neurons PC12 Cells Permeability pH effects Pheochromocytoma cells Phosphorylation Plasma Plasma Membrane Calcium-Transporting ATPases - antagonists & inhibitors Plasma Membrane Calcium-Transporting ATPases - genetics Plasma Membrane Calcium-Transporting ATPases - metabolism Potassium chloride Potassium Chloride - pharmacology Preservation Protons Rats Rodents Signal Transduction Steady state |
title | Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20membrane%20Ca2+-ATPase%20isoforms%20composition%20regulates%20cellular%20pH%20homeostasis%20in%20differentiating%20PC12%20cells%20in%20a%20manner%20dependent%20on%20cytosolic%20Ca2+%20elevations&rft.jtitle=PloS%20one&rft.au=Boczek,%20Tomasz&rft.date=2014-07-11&rft.volume=9&rft.issue=7&rft.spage=e102352&rft.epage=e102352&rft.pages=e102352-e102352&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0102352&rft_dat=%3Cproquest_plos_%3E3369762851%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-427922591586aebcc7e35765ecce4317498ab82eb800da3fc790c5f0b8f582f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1544513156&rft_id=info:pmid/25014339&rfr_iscdi=true |