Loading…

Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves

Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes i...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-07, Vol.9 (7), p.e102690-e102690
Main Authors: Mouekouba, Liana Dalcantara Ongouya, Zhang, Lili, Guan, Xin, Chen, Xiuling, Chen, Hongyu, Zhang, Jian, Zhang, Junfeng, Li, Jingfu, Yang, Yijun, Wang, Aoxue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST), second messengers (NO, H2O2, O2(-)) and phytohormones (IAA, ABA, GA3, ZT, MeJA, SA and C2H4). Compared to the control, all treatments induced higher levels of PAL, PPO and GST activity in tomato leaves and increased NO, SA and GA3 levels. The expression of WRKY and MAPK, two important transcription factors in plant disease resistance, was upregulated in C. rosea- and C. rosea plus B. cinerea-treated samples. Two-dimensional gel electrophoresis analysis showed that two abundant proteins were present in the C. rosea plus B. cinerea-treated samples but not in the other samples. These proteins were determined (by mass spectrum analysis) to be LEXYL2 (β-xylosidase) and ATP synthase CF1 alpha subunit. Therefore, C. rosea plus B. cinerea treatment induces gray mold resistance in tomato. This study provides a basis for elucidating the mechanism of C. rosea as a biocontrol agent.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0102690