Loading…
Regulation of cardiac expression of the diabetic marker microRNA miR-29
Diabetes mellitus (DM) is an independent risk factor for heart disease and its underlying mechanisms are unclear. Increased expression of diabetic marker miR-29 family miRNAs (miR-29a, b and c) that suppress the pro-survival protein Myeloid Cell Leukemia 1(MCL-1) is reported in pancreatic β-cells in...
Saved in:
Published in: | PloS one 2014-07, Vol.9 (7), p.e103284 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetes mellitus (DM) is an independent risk factor for heart disease and its underlying mechanisms are unclear. Increased expression of diabetic marker miR-29 family miRNAs (miR-29a, b and c) that suppress the pro-survival protein Myeloid Cell Leukemia 1(MCL-1) is reported in pancreatic β-cells in Type 1 DM. Whether an up-regulation of miR-29 family miRNAs and suppression of MCL-1 (dysregulation of miR-29-MCL-1 axis) occurs in diabetic heart is not known. This study tested the hypothesis that insulin regulates cardiac miR-29-MCL-1 axis and its dysregulation correlates with DM progression. In vitro studies with mouse cardiomyocyte HL-1 cells showed that insulin suppressed the expression of miR-29a, b and c and increased MCL-1 mRNA. Conversely, Rapamycin (Rap), a drug implicated in the new onset DM, increased the expression of miR-29a, b and c and suppressed MCL-1 and this effect was reversed by transfection with miR-29 inhibitors. Rap inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in HL-1 cells. Moreover, inhibition of either mTORC1 substrate S6K1 by PF-4708671, or eIF4E-induced translation by 4E1RCat suppressed MCL-1. We used Zucker diabetic fatty (ZDF) rat, a rodent model for DM, to test whether dysregulation of cardiac miR-29-MCL-1 axis correlates with DM progression. 11-week old ZDF rats exhibited significantly increased body weight, plasma glucose, insulin, cholesterol, triglycerides, body fat, heart weight, and decreased lean muscle mass compared to age-matched lean rats. Rap treatment (1.2 mg/kg/day, from 9-weeks to 15-weeks) significantly reduced plasma insulin, body weight and heart weight, and severely dysregulated cardiac miR-29-MCL1 axis in ZDF rats. Importantly, dysregulation of cardiac miR-29-MCL-1 axis in ZDF rat heart correlated with cardiac structural damage (disorganization or loss of myofibril bundles). We conclude that insulin and mTORC1 regulate cardiac miR-29-MCL-1 axis and its dysregulation caused by reduced insulin and mTORC1 inhibition increases the vulnerability of a diabetic heart to structural damage. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0103284 |