Loading…

Functional balance between the hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 HA D222 variants

D222G/N substitutions in A(H1N1)pdm09 hemagglutinin may be associated with increased binding of viruses causing low respiratory tract infections and human pathogenesis. We assessed the impact of such substitutions on the balance between hemagglutinin binding and neuraminidase cleavage, viral growth...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-08, Vol.9 (8), p.e104009
Main Authors: Casalegno, Jean-Sébastien, Ferraris, Olivier, Escuret, Vanessa, Bouscambert, Maude, Bergeron, Corinne, Linès, Laetitia, Excoffier, Thierry, Valette, Martine, Frobert, Emilie, Pillet, Sylvie, Pozzetto, Bruno, Lina, Bruno, Ottmann, Michèle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:D222G/N substitutions in A(H1N1)pdm09 hemagglutinin may be associated with increased binding of viruses causing low respiratory tract infections and human pathogenesis. We assessed the impact of such substitutions on the balance between hemagglutinin binding and neuraminidase cleavage, viral growth and in vivo virulence.Seven viruses with differing polymorphisms at codon 222 (2 with D, 3 G, 1 N and 1 E) were isolated from patients and characterized with regards hemagglutinin binding affinity (Kd) to α-2,6 sialic acid (SAα-2,6) and SAα-2,3 and neuraminidase enzymatic properties (Km, Ki and Vmax). The hemagglutination assay was used to quantitatively assess the balance between hemagglutinin binding and neuraminidase cleavage. Viral growth properties were compared in vitro in MDCK-SIAT1 cells and in vivo in BALB/c mice. Compared with D222 variants, the binding affinity of G222 variants was greater for SAα-2,3 and lower for SAα-2,6, whereas that of both E222 and N222 variants was greater for both SAα-2,3 and SAα-2,6. Mean neuraminidase activity of D222 variants (16.0 nmol/h/10(6)) was higher than that of G222 (1.7 nmol/h/10(6) viruses) and E/N222 variants (4.4 nmol/h/10(6) viruses). The hemagglutination assay demonstrated a deviation from functional balance by E222 and N222 variants that displayed strong hemagglutinin binding but weak neuraminidase activity. This deviation impaired viral growth in MDCK-SIAT1 cells but not infectivity in mice. All strains but one exhibited low infectious dose in mice (MID50) and replicated to high titers in the lung; this D222 strain exhibited a ten-fold higher MID50 and replicated to low titers. Hemagglutinin-neuraminidase balance status had a greater impact on viral replication than hemagglutinin affinity strength, at least in vitro, thus emphasizing the importance of an optimal balance for influenza virus fitness. The mouse model is effective in assessing binding to SAα-2,3 but cannot differentiate SAα-2,3- from SAα-2,6- preference, nor estimate the hemagglutinin-neuraminidase balance in A(H1N1)pdm09 strains.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0104009