Loading…
Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons
Development of in vivo daptomycin resistance (DAP-R) among Staphylococcus aureus clinical isolates, in association with clinical treatment failures, has become a major therapeutic problem. This issue is especially relevant to methicillin-resistant S. aureus (MRSA) strains in the context of invasive...
Saved in:
Published in: | PloS one 2014-09, Vol.9 (9), p.e107426-e107426 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Development of in vivo daptomycin resistance (DAP-R) among Staphylococcus aureus clinical isolates, in association with clinical treatment failures, has become a major therapeutic problem. This issue is especially relevant to methicillin-resistant S. aureus (MRSA) strains in the context of invasive endovascular infections. In the current study, we used three well-characterized and clinically-derived DAP-susceptible (DAP-S) vs. resistant (DAP-R) MRSA strain-pairs to elucidate potential genotypic mechanisms of the DAP-R phenotype. In comparison to the DAP-S parental strains, DAP-R isolates demonstrated (i) altered expression of two key determinants of net positive surface charge, either during exponential or stationary growth phases (i.e., dysregulation of dltA and mprF), (ii) a significant increase in the D-alanylated wall teichoic acid (WTA) content in DAP-R strains, reflecting DltA gain-in-function; (iii) heightened elaboration of lysinylated-phosphatidylglyderol (L-PG) in DAP-R strains, reflecting MprF gain-in-function; (iv) increased cell membrane (CM) fluidity, and (v) significantly reduced susceptibility to prototypic cationic host defense peptides of platelet and leukocyte origins. In the tested DAP-R strains, genes conferring positive surface charge were dysregulated, and their functionality altered. However, there were no correlations between relative surface positive charge or cell wall thickness and the observed DAP-R phenotype. Thus, charge repulsion mechanisms via altered surface charge may not be sufficient to explain the DAP-R outcome. Instead, changes in the compositional or biophysical order of the DAP CM target of such DAP-R strains (i.e., increased fluidity) may be essential to this phenotype. Taken together, DAP-R in S. aureus appears to involve multi-factorial and strain-specific adaptive mechanisms. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0107426 |