Loading…

An in vivo three-dimensional magnetic resonance imaging-based averaged brain collection of the neonatal piglet (Sus scrofa)

Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI) can be a powerful tool to study neurodevelopment in piglets, but many of the...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-09, Vol.9 (9), p.e107650
Main Authors: Conrad, Matthew S, Sutton, Bradley P, Dilger, Ryan N, Johnson, Rodney W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI) can be a powerful tool to study neurodevelopment in piglets, but many of the MRI resources have been produced for adult humans. Here, we present an average in vivo MRI-based atlas specific for the 4-week-old piglet. In addition, we have developed probabilistic tissue classification maps. These tools can be used with brain mapping software packages (e.g. SPM and FSL) to aid in voxel-based morphometry and image analysis techniques. The atlas enables efficient study of neurodevelopment in a highly tractable translational animal with brain growth and development similar to humans.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0107650