Loading…

Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking

Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and r...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-10, Vol.9 (10), p.e109164-e109164
Main Authors: Kowallick, Johannes T, Lamata, Pablo, Hussain, Shazia T, Kutty, Shelby, Steinmetz, Michael, Sohns, Jan M, Fasshauer, Martin, Staab, Wieland, Unterberg-Buchwald, Christina, Bigalke, Boris, Lotz, Joachim, Hasenfuß, Gerd, Schuster, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3
cites cdi_FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3
container_end_page e109164
container_issue 10
container_start_page e109164
container_title PloS one
container_volume 9
creator Kowallick, Johannes T
Lamata, Pablo
Hussain, Shazia T
Kutty, Shelby
Steinmetz, Michael
Sohns, Jan M
Fasshauer, Martin
Staab, Wieland
Unterberg-Buchwald, Christina
Bigalke, Boris
Lotz, Joachim
Hasenfuß, Gerd
Schuster, Andreas
description Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1) · min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1), 3.6 ± 2.0° cm(-1), 5.1 ± 2.2° cm(-1), p
doi_str_mv 10.1371/journal.pone.0109164
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1604505251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4fc0f81a78444ef1853bbebd66983933</doaj_id><sourcerecordid>3453281051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3</originalsourceid><addsrcrecordid>eNptkk2LFDEQhhtR3HX1H4g2ePEyY76n-yLI4sfCggh6DtXpypgxk4xJemDP_nEzM73LrnhKSD3vm6ribZqXlCwpX9F3mzilAH65iwGXhJKeKvGoOac9ZwvFCH98737WPMt5Q4jknVJPmzMmWSeVVOfNn28ThOKsM1BcDG20rUdb2j2GkpyZPKS2xJQPNQhjOzrIJXpn2oQmOt9O2YV1ayCNLu4hnxRbWAcsRyjHAMFgu72JRwh8axHKlLAtCcyvqn7ePLHgM76Yz4vmx6eP3y-_LK6_fr66_HC9MLJnZcEQ0aBkAzXKdLxbUUlxUHSEfgRrh15YJUaDRkgisKcDY6KTA1I29HVjI79oXp98dz5mPe8va6pIVUgmaSWuTsQYYaN3yW0h3egITh8fYlprSHUuj1pYQ2xHYdUJIdDSTvJhwGFUqu94z3n1ej__Ng1brH3VhYJ_YPqwEtxPvY57LWinVh2pBm9ngxR_T5iL3rps0HsIGKdj3z0nqmahom_-Qf8_nThRJsWcE9q7ZijRh0zdqvQhU3rOVJW9uj_Ineg2RPwvgvXOtQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1604505251</pqid></control><display><type>article</type><title>Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kowallick, Johannes T ; Lamata, Pablo ; Hussain, Shazia T ; Kutty, Shelby ; Steinmetz, Michael ; Sohns, Jan M ; Fasshauer, Martin ; Staab, Wieland ; Unterberg-Buchwald, Christina ; Bigalke, Boris ; Lotz, Joachim ; Hasenfuß, Gerd ; Schuster, Andreas</creator><contributor>Zhang, Zhuoli</contributor><creatorcontrib>Kowallick, Johannes T ; Lamata, Pablo ; Hussain, Shazia T ; Kutty, Shelby ; Steinmetz, Michael ; Sohns, Jan M ; Fasshauer, Martin ; Staab, Wieland ; Unterberg-Buchwald, Christina ; Bigalke, Boris ; Lotz, Joachim ; Hasenfuß, Gerd ; Schuster, Andreas ; Zhang, Zhuoli</creatorcontrib><description>Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1) · min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1), 3.6 ± 2.0° cm(-1), 5.1 ± 2.2° cm(-1), p&lt;0.01; Global Recoil Rate: -30.1 ± 11.1° cm(-1) s(-1),-46.9 ± 15.0° cm(-1) s(-1),-68.9 ± 32.3° cm(-1) s(-1), p&lt;0.01; for rest, 10 and 20 µg · kg(-)1 · min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0109164</identifier><identifier>PMID: 25285656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Biology and Life Sciences ; Biomedical engineering ; Cardiology ; Cardiovascular disease ; Coefficient of variation ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Data processing ; Deformation ; Diastole - drug effects ; Diastole - physiology ; Dobutamine - pharmacology ; Feasibility studies ; Female ; Fourier analysis ; Heart ; Heart failure ; Hemodynamics - drug effects ; Hospitals ; Humans ; Interpolation ; Magnetic resonance ; Magnetic Resonance Imaging, Cine ; Male ; Medicine and Health Sciences ; Middle Aged ; Myocardium - metabolism ; NMR ; Nuclear magnetic resonance ; Recoil ; Reproducibility ; Resonance ; Rest ; Rotation ; Three dimensional models ; Torsion ; Torsion, Mechanical ; Ventricle ; Ventricular Function, Left - drug effects ; Ventricular Function, Left - physiology ; Young Adult</subject><ispartof>PloS one, 2014-10, Vol.9 (10), p.e109164-e109164</ispartof><rights>2014 Kowallick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Kowallick et al 2014 Kowallick et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3</citedby><cites>FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1604505251/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1604505251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25285656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Zhuoli</contributor><creatorcontrib>Kowallick, Johannes T</creatorcontrib><creatorcontrib>Lamata, Pablo</creatorcontrib><creatorcontrib>Hussain, Shazia T</creatorcontrib><creatorcontrib>Kutty, Shelby</creatorcontrib><creatorcontrib>Steinmetz, Michael</creatorcontrib><creatorcontrib>Sohns, Jan M</creatorcontrib><creatorcontrib>Fasshauer, Martin</creatorcontrib><creatorcontrib>Staab, Wieland</creatorcontrib><creatorcontrib>Unterberg-Buchwald, Christina</creatorcontrib><creatorcontrib>Bigalke, Boris</creatorcontrib><creatorcontrib>Lotz, Joachim</creatorcontrib><creatorcontrib>Hasenfuß, Gerd</creatorcontrib><creatorcontrib>Schuster, Andreas</creatorcontrib><title>Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1) · min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1), 3.6 ± 2.0° cm(-1), 5.1 ± 2.2° cm(-1), p&lt;0.01; Global Recoil Rate: -30.1 ± 11.1° cm(-1) s(-1),-46.9 ± 15.0° cm(-1) s(-1),-68.9 ± 32.3° cm(-1) s(-1), p&lt;0.01; for rest, 10 and 20 µg · kg(-)1 · min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>Coefficient of variation</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Diastole - drug effects</subject><subject>Diastole - physiology</subject><subject>Dobutamine - pharmacology</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Fourier analysis</subject><subject>Heart</subject><subject>Heart failure</subject><subject>Hemodynamics - drug effects</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Interpolation</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Myocardium - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Recoil</subject><subject>Reproducibility</subject><subject>Resonance</subject><subject>Rest</subject><subject>Rotation</subject><subject>Three dimensional models</subject><subject>Torsion</subject><subject>Torsion, Mechanical</subject><subject>Ventricle</subject><subject>Ventricular Function, Left - drug effects</subject><subject>Ventricular Function, Left - physiology</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2LFDEQhhtR3HX1H4g2ePEyY76n-yLI4sfCggh6DtXpypgxk4xJemDP_nEzM73LrnhKSD3vm6ribZqXlCwpX9F3mzilAH65iwGXhJKeKvGoOac9ZwvFCH98737WPMt5Q4jknVJPmzMmWSeVVOfNn28ThOKsM1BcDG20rUdb2j2GkpyZPKS2xJQPNQhjOzrIJXpn2oQmOt9O2YV1ayCNLu4hnxRbWAcsRyjHAMFgu72JRwh8axHKlLAtCcyvqn7ePLHgM76Yz4vmx6eP3y-_LK6_fr66_HC9MLJnZcEQ0aBkAzXKdLxbUUlxUHSEfgRrh15YJUaDRkgisKcDY6KTA1I29HVjI79oXp98dz5mPe8va6pIVUgmaSWuTsQYYaN3yW0h3egITh8fYlprSHUuj1pYQ2xHYdUJIdDSTvJhwGFUqu94z3n1ej__Ng1brH3VhYJ_YPqwEtxPvY57LWinVh2pBm9ngxR_T5iL3rps0HsIGKdj3z0nqmahom_-Qf8_nThRJsWcE9q7ZijRh0zdqvQhU3rOVJW9uj_Ineg2RPwvgvXOtQ</recordid><startdate>20141006</startdate><enddate>20141006</enddate><creator>Kowallick, Johannes T</creator><creator>Lamata, Pablo</creator><creator>Hussain, Shazia T</creator><creator>Kutty, Shelby</creator><creator>Steinmetz, Michael</creator><creator>Sohns, Jan M</creator><creator>Fasshauer, Martin</creator><creator>Staab, Wieland</creator><creator>Unterberg-Buchwald, Christina</creator><creator>Bigalke, Boris</creator><creator>Lotz, Joachim</creator><creator>Hasenfuß, Gerd</creator><creator>Schuster, Andreas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141006</creationdate><title>Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking</title><author>Kowallick, Johannes T ; Lamata, Pablo ; Hussain, Shazia T ; Kutty, Shelby ; Steinmetz, Michael ; Sohns, Jan M ; Fasshauer, Martin ; Staab, Wieland ; Unterberg-Buchwald, Christina ; Bigalke, Boris ; Lotz, Joachim ; Hasenfuß, Gerd ; Schuster, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>Coefficient of variation</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Diastole - drug effects</topic><topic>Diastole - physiology</topic><topic>Dobutamine - pharmacology</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Fourier analysis</topic><topic>Heart</topic><topic>Heart failure</topic><topic>Hemodynamics - drug effects</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Interpolation</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Myocardium - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Recoil</topic><topic>Reproducibility</topic><topic>Resonance</topic><topic>Rest</topic><topic>Rotation</topic><topic>Three dimensional models</topic><topic>Torsion</topic><topic>Torsion, Mechanical</topic><topic>Ventricle</topic><topic>Ventricular Function, Left - drug effects</topic><topic>Ventricular Function, Left - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowallick, Johannes T</creatorcontrib><creatorcontrib>Lamata, Pablo</creatorcontrib><creatorcontrib>Hussain, Shazia T</creatorcontrib><creatorcontrib>Kutty, Shelby</creatorcontrib><creatorcontrib>Steinmetz, Michael</creatorcontrib><creatorcontrib>Sohns, Jan M</creatorcontrib><creatorcontrib>Fasshauer, Martin</creatorcontrib><creatorcontrib>Staab, Wieland</creatorcontrib><creatorcontrib>Unterberg-Buchwald, Christina</creatorcontrib><creatorcontrib>Bigalke, Boris</creatorcontrib><creatorcontrib>Lotz, Joachim</creatorcontrib><creatorcontrib>Hasenfuß, Gerd</creatorcontrib><creatorcontrib>Schuster, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowallick, Johannes T</au><au>Lamata, Pablo</au><au>Hussain, Shazia T</au><au>Kutty, Shelby</au><au>Steinmetz, Michael</au><au>Sohns, Jan M</au><au>Fasshauer, Martin</au><au>Staab, Wieland</au><au>Unterberg-Buchwald, Christina</au><au>Bigalke, Boris</au><au>Lotz, Joachim</au><au>Hasenfuß, Gerd</au><au>Schuster, Andreas</au><au>Zhang, Zhuoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-10-06</date><risdate>2014</risdate><volume>9</volume><issue>10</issue><spage>e109164</spage><epage>e109164</epage><pages>e109164-e109164</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1) · min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1), 3.6 ± 2.0° cm(-1), 5.1 ± 2.2° cm(-1), p&lt;0.01; Global Recoil Rate: -30.1 ± 11.1° cm(-1) s(-1),-46.9 ± 15.0° cm(-1) s(-1),-68.9 ± 32.3° cm(-1) s(-1), p&lt;0.01; for rest, 10 and 20 µg · kg(-)1 · min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25285656</pmid><doi>10.1371/journal.pone.0109164</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-10, Vol.9 (10), p.e109164-e109164
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1604505251
source Publicly Available Content Database; PubMed Central
subjects Adult
Algorithms
Biology and Life Sciences
Biomedical engineering
Cardiology
Cardiovascular disease
Coefficient of variation
Correlation analysis
Correlation coefficient
Correlation coefficients
Data processing
Deformation
Diastole - drug effects
Diastole - physiology
Dobutamine - pharmacology
Feasibility studies
Female
Fourier analysis
Heart
Heart failure
Hemodynamics - drug effects
Hospitals
Humans
Interpolation
Magnetic resonance
Magnetic Resonance Imaging, Cine
Male
Medicine and Health Sciences
Middle Aged
Myocardium - metabolism
NMR
Nuclear magnetic resonance
Recoil
Reproducibility
Resonance
Rest
Rotation
Three dimensional models
Torsion
Torsion, Mechanical
Ventricle
Ventricular Function, Left - drug effects
Ventricular Function, Left - physiology
Young Adult
title Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20left%20ventricular%20torsion%20and%20diastolic%20recoil%20using%20cardiovascular%20magnetic%20resonance%20myocardial%20feature%20tracking&rft.jtitle=PloS%20one&rft.au=Kowallick,%20Johannes%20T&rft.date=2014-10-06&rft.volume=9&rft.issue=10&rft.spage=e109164&rft.epage=e109164&rft.pages=e109164-e109164&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0109164&rft_dat=%3Cproquest_plos_%3E3453281051%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c592t-2eeece52b1c6c8387151eb61da9daffb94f64dcec4504e91b22485be12b9137d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1604505251&rft_id=info:pmid/25285656&rfr_iscdi=true