Loading…

Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system

The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficientl...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-10, Vol.9 (10), p.e109755
Main Authors: Fan, Zhiqiang, Li, Wei, Lee, Sang R, Meng, Qinggang, Shi, Bi, Bunch, Thomas D, White, Kenneth L, Kong, Il-Keun, Wang, Zhongde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3
cites cdi_FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3
container_end_page
container_issue 10
container_start_page e109755
container_title PloS one
container_volume 9
creator Fan, Zhiqiang
Li, Wei
Lee, Sang R
Meng, Qinggang
Shi, Bi
Bunch, Thomas D
White, Kenneth L
Kong, Il-Keun
Wang, Zhongde
description The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.
doi_str_mv 10.1371/journal.pone.0109755
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1609503068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418633955</galeid><doaj_id>oai_doaj_org_article_ff283bb1aa264a51a55724f718658bee</doaj_id><sourcerecordid>A418633955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3</originalsourceid><addsrcrecordid>eNqNkl-LEzEUxQdR3HX1G4gOCIIP7ebPJDN5EZayaqGw0qqvIZNJpikzSTfJiP32pnZ26YCC5CHh5nfPvRxOlr2GYA5xCa93bvBWdPO9s2oOIGAlIU-yS8gwmlEE8NOz90X2IoQdAARXlD7PLhBBjBUEXmarW62NNMrGvFVW5VH4VkVj29zYvHVdo2y-OXgjbL4VfYjKh7w-5HGr8sV6ufm6vl6IwPJwSF_9y-yZFl1Qr8b7Kvv-6fbb4stsdfd5ubhZzSRlKM6grAARFDcNklWNdEV0WRQMY4CZplrXjECsJGBYKkUJQgRQSlEtVcOobhS-yt6edPedC3w0InBIASMAA1olYnkiGid2fO9NL_yBO2H4n4LzLRc-GtkprjWqcF1DIRAtBIGCkBIVuoQVJVWtjtM-jtOGuleNTF550U1Epz_WbHnrfvICMoRJmQTejQLe3Q8qxH-sPFKtSFsZq10Sk70Jkt8UaRmMGSGJmv-FSqdRvZEpCtqk-qThw6QhMVH9iq0YQuDLzfr_2bsfU_b9GbtVoovb4LohGmfDFCxOoPQuBK_0o3MQ8GOSH9zgxyTzMcmp7c25649ND9HFvwHJRezO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609503068</pqid></control><display><type>article</type><title>Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Fan, Zhiqiang ; Li, Wei ; Lee, Sang R ; Meng, Qinggang ; Shi, Bi ; Bunch, Thomas D ; White, Kenneth L ; Kong, Il-Keun ; Wang, Zhongde</creator><contributor>Tang, Yao Liang</contributor><creatorcontrib>Fan, Zhiqiang ; Li, Wei ; Lee, Sang R ; Meng, Qinggang ; Shi, Bi ; Bunch, Thomas D ; White, Kenneth L ; Kong, Il-Keun ; Wang, Zhongde ; Tang, Yao Liang</creatorcontrib><description>The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0109755</identifier><identifier>PMID: 25299451</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenoviruses ; Amino Acid Sequence ; Animal models ; Animals ; Animals, Genetically Modified ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Clostridium difficile ; CRISPR ; CRISPR-Associated Protein 9 ; CRISPR-Associated Proteins - genetics ; CRISPR-Associated Proteins - metabolism ; Cytosol - metabolism ; Deoxyribonucleic acid ; Design ; DNA ; Endonucleases - genetics ; Endonucleases - metabolism ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Gene loci ; Gene targeting ; Gene Targeting - methods ; Genetic engineering ; Genetic Engineering - methods ; Genetically modified organisms ; Genomes ; Hamsters ; Infections ; Injection ; KCNQ1 Potassium Channel - genetics ; KCNQ1 Potassium Channel - metabolism ; KCNQ1 protein ; Kidney - cytology ; Kidney - metabolism ; Laboratory animals ; Life sciences ; Mammals ; Medicine and health sciences ; Mesocricetus - genetics ; Mesocricetus auratus ; Microinjections ; Molecular Sequence Data ; mRNA ; Mutagenesis, Site-Directed ; Mutation ; Plasmids ; Plasmids - administration &amp; dosage ; Plasmids - genetics ; Potassium channels (voltage-gated) ; Protein Phosphatase 1 - genetics ; Protein Phosphatase 1 - metabolism ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism ; RNA, Messenger - administration &amp; dosage ; RNA, Messenger - genetics ; Rodents ; Somatic cells ; Stat2 protein ; STAT2 Transcription Factor - genetics ; STAT2 Transcription Factor - metabolism ; Stem cells ; Viral infections ; Viruses</subject><ispartof>PloS one, 2014-10, Vol.9 (10), p.e109755</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Fan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Fan et al 2014 Fan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3</citedby><cites>FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1609503068/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1609503068?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25299451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tang, Yao Liang</contributor><creatorcontrib>Fan, Zhiqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Lee, Sang R</creatorcontrib><creatorcontrib>Meng, Qinggang</creatorcontrib><creatorcontrib>Shi, Bi</creatorcontrib><creatorcontrib>Bunch, Thomas D</creatorcontrib><creatorcontrib>White, Kenneth L</creatorcontrib><creatorcontrib>Kong, Il-Keun</creatorcontrib><creatorcontrib>Wang, Zhongde</creatorcontrib><title>Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.</description><subject>Adenoviruses</subject><subject>Amino Acid Sequence</subject><subject>Animal models</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Clostridium difficile</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>Cytosol - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Design</subject><subject>DNA</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene loci</subject><subject>Gene targeting</subject><subject>Gene Targeting - methods</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Genetically modified organisms</subject><subject>Genomes</subject><subject>Hamsters</subject><subject>Infections</subject><subject>Injection</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>KCNQ1 protein</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Laboratory animals</subject><subject>Life sciences</subject><subject>Mammals</subject><subject>Medicine and health sciences</subject><subject>Mesocricetus - genetics</subject><subject>Mesocricetus auratus</subject><subject>Microinjections</subject><subject>Molecular Sequence Data</subject><subject>mRNA</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>Plasmids - administration &amp; dosage</subject><subject>Plasmids - genetics</subject><subject>Potassium channels (voltage-gated)</subject><subject>Protein Phosphatase 1 - genetics</subject><subject>Protein Phosphatase 1 - metabolism</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>RNA, Messenger - administration &amp; dosage</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Somatic cells</subject><subject>Stat2 protein</subject><subject>STAT2 Transcription Factor - genetics</subject><subject>STAT2 Transcription Factor - metabolism</subject><subject>Stem cells</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-LEzEUxQdR3HX1G4gOCIIP7ebPJDN5EZayaqGw0qqvIZNJpikzSTfJiP32pnZ26YCC5CHh5nfPvRxOlr2GYA5xCa93bvBWdPO9s2oOIGAlIU-yS8gwmlEE8NOz90X2IoQdAARXlD7PLhBBjBUEXmarW62NNMrGvFVW5VH4VkVj29zYvHVdo2y-OXgjbL4VfYjKh7w-5HGr8sV6ufm6vl6IwPJwSF_9y-yZFl1Qr8b7Kvv-6fbb4stsdfd5ubhZzSRlKM6grAARFDcNklWNdEV0WRQMY4CZplrXjECsJGBYKkUJQgRQSlEtVcOobhS-yt6edPedC3w0InBIASMAA1olYnkiGid2fO9NL_yBO2H4n4LzLRc-GtkprjWqcF1DIRAtBIGCkBIVuoQVJVWtjtM-jtOGuleNTF550U1Epz_WbHnrfvICMoRJmQTejQLe3Q8qxH-sPFKtSFsZq10Sk70Jkt8UaRmMGSGJmv-FSqdRvZEpCtqk-qThw6QhMVH9iq0YQuDLzfr_2bsfU_b9GbtVoovb4LohGmfDFCxOoPQuBK_0o3MQ8GOSH9zgxyTzMcmp7c25649ND9HFvwHJRezO</recordid><startdate>20141009</startdate><enddate>20141009</enddate><creator>Fan, Zhiqiang</creator><creator>Li, Wei</creator><creator>Lee, Sang R</creator><creator>Meng, Qinggang</creator><creator>Shi, Bi</creator><creator>Bunch, Thomas D</creator><creator>White, Kenneth L</creator><creator>Kong, Il-Keun</creator><creator>Wang, Zhongde</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141009</creationdate><title>Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system</title><author>Fan, Zhiqiang ; Li, Wei ; Lee, Sang R ; Meng, Qinggang ; Shi, Bi ; Bunch, Thomas D ; White, Kenneth L ; Kong, Il-Keun ; Wang, Zhongde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenoviruses</topic><topic>Amino Acid Sequence</topic><topic>Animal models</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Clostridium difficile</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>Cytosol - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Design</topic><topic>DNA</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene loci</topic><topic>Gene targeting</topic><topic>Gene Targeting - methods</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Genetically modified organisms</topic><topic>Genomes</topic><topic>Hamsters</topic><topic>Infections</topic><topic>Injection</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>KCNQ1 protein</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Laboratory animals</topic><topic>Life sciences</topic><topic>Mammals</topic><topic>Medicine and health sciences</topic><topic>Mesocricetus - genetics</topic><topic>Mesocricetus auratus</topic><topic>Microinjections</topic><topic>Molecular Sequence Data</topic><topic>mRNA</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>Plasmids - administration &amp; dosage</topic><topic>Plasmids - genetics</topic><topic>Potassium channels (voltage-gated)</topic><topic>Protein Phosphatase 1 - genetics</topic><topic>Protein Phosphatase 1 - metabolism</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>RNA, Messenger - administration &amp; dosage</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Somatic cells</topic><topic>Stat2 protein</topic><topic>STAT2 Transcription Factor - genetics</topic><topic>STAT2 Transcription Factor - metabolism</topic><topic>Stem cells</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Zhiqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Lee, Sang R</creatorcontrib><creatorcontrib>Meng, Qinggang</creatorcontrib><creatorcontrib>Shi, Bi</creatorcontrib><creatorcontrib>Bunch, Thomas D</creatorcontrib><creatorcontrib>White, Kenneth L</creatorcontrib><creatorcontrib>Kong, Il-Keun</creatorcontrib><creatorcontrib>Wang, Zhongde</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Zhiqiang</au><au>Li, Wei</au><au>Lee, Sang R</au><au>Meng, Qinggang</au><au>Shi, Bi</au><au>Bunch, Thomas D</au><au>White, Kenneth L</au><au>Kong, Il-Keun</au><au>Wang, Zhongde</au><au>Tang, Yao Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-10-09</date><risdate>2014</risdate><volume>9</volume><issue>10</issue><spage>e109755</spage><pages>e109755-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25299451</pmid><doi>10.1371/journal.pone.0109755</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-10, Vol.9 (10), p.e109755
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1609503068
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adenoviruses
Amino Acid Sequence
Animal models
Animals
Animals, Genetically Modified
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology and Life Sciences
Cell Nucleus - genetics
Cell Nucleus - metabolism
Clostridium difficile
CRISPR
CRISPR-Associated Protein 9
CRISPR-Associated Proteins - genetics
CRISPR-Associated Proteins - metabolism
Cytosol - metabolism
Deoxyribonucleic acid
Design
DNA
Endonucleases - genetics
Endonucleases - metabolism
Epithelial Cells - cytology
Epithelial Cells - metabolism
Gene loci
Gene targeting
Gene Targeting - methods
Genetic engineering
Genetic Engineering - methods
Genetically modified organisms
Genomes
Hamsters
Infections
Injection
KCNQ1 Potassium Channel - genetics
KCNQ1 Potassium Channel - metabolism
KCNQ1 protein
Kidney - cytology
Kidney - metabolism
Laboratory animals
Life sciences
Mammals
Medicine and health sciences
Mesocricetus - genetics
Mesocricetus auratus
Microinjections
Molecular Sequence Data
mRNA
Mutagenesis, Site-Directed
Mutation
Plasmids
Plasmids - administration & dosage
Plasmids - genetics
Potassium channels (voltage-gated)
Protein Phosphatase 1 - genetics
Protein Phosphatase 1 - metabolism
RNA
RNA, Guide, CRISPR-Cas Systems - genetics
RNA, Guide, CRISPR-Cas Systems - metabolism
RNA, Messenger - administration & dosage
RNA, Messenger - genetics
Rodents
Somatic cells
Stat2 protein
STAT2 Transcription Factor - genetics
STAT2 Transcription Factor - metabolism
Stem cells
Viral infections
Viruses
title Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20gene%20targeting%20in%20golden%20Syrian%20hamsters%20by%20the%20CRISPR/Cas9%20system&rft.jtitle=PloS%20one&rft.au=Fan,%20Zhiqiang&rft.date=2014-10-09&rft.volume=9&rft.issue=10&rft.spage=e109755&rft.pages=e109755-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0109755&rft_dat=%3Cgale_plos_%3EA418633955%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-1c805a63dd2c8b2f85f744933039f6ffb9513ec093cee6522506662bced96fde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609503068&rft_id=info:pmid/25299451&rft_galeid=A418633955&rfr_iscdi=true