Loading…

Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations

Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-11, Vol.9 (11), p.e113041-e113041
Main Authors: Das, Payel, Kang, Seung-gu, Temple, Sally, Belfort, Georges
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33
cites cdi_FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33
container_end_page e113041
container_issue 11
container_start_page e113041
container_title PloS one
container_volume 9
creator Das, Payel
Kang, Seung-gu
Temple, Sally
Belfort, Georges
description Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.
doi_str_mv 10.1371/journal.pone.0113041
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1627986157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417793730</galeid><doaj_id>oai_doaj_org_article_86aa1352ae8d4fbda583aa595667ddb9</doaj_id><sourcerecordid>A417793730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLguiLXZPmoa0vhOPwYeHgQA_fhmmTbLO0TS9J1f32Znd7y1buhSSQMPnNfzKTTJK8xGiJSY4_bOzoemiXg-3VEmFMEMWPknNckmzBM0Qen-zPkmfebxBipOD8aXKWMZplRZmfJ3erPigHdTC2T61Oodu21sjU9I2pTLAuHZwNyvQ-_W1CczyvVIB0UEMwUvmPEfdm3YRUO9ulnW1VPbbgUrntoTO1T73pomEXxD9PnmhovXoxrRfJ7ZfPt1ffFtc3X1dXl9eLmpdZWFCUKyi1xqhSTEuGKOc6LwoAjikghXlMTiOZY6QL4EwywKRGqi6oqoCQi-T1QXZorRdTsbzAPMvLgmOWR2J1IKSFjRic6cBthQUj9gbr1gJcMHWrRMEhqrMMVCGpriSwggCwknGeS1mVUevTFG2sOiVr1QcH7Ux0ftKbRqztL0EzSlFBo8C7ScDZu1H5IDrja9W20Cs77u9dsDgJi-ibf9CHs5uoNcQETK9tjFvvRMUlxXlekpygSC0foOKQKr5b_FnaRPvM4f3MITJB_QlrGL0Xqx_f_5-9-Tln356wjYI2NN624_7LzEF6AGtnvXdKH4uMkdg1xn01xK4xxNQY0e3V6QMdne47gfwFEecK-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627986157</pqid></control><display><type>article</type><title>Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Das, Payel ; Kang, Seung-gu ; Temple, Sally ; Belfort, Georges</creator><creatorcontrib>Das, Payel ; Kang, Seung-gu ; Temple, Sally ; Belfort, Georges</creatorcontrib><description>Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0113041</identifier><identifier>PMID: 25422897</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agglomeration ; alpha-Crystallin B Chain - metabolism ; Alzheimer's disease ; Amino Acid Sequence ; Amino acids ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Binding ; Binding Sites ; Biology and Life Sciences ; Chemical properties ; Crystal structure ; Crystallin ; Crystallinity ; Electrostatic properties ; Electrostatics ; Experiments ; Humans ; Inhibitors ; Lysozyme ; Medical treatment ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Monomers ; Muramidase - metabolism ; Neurodegenerative diseases ; Oligomers ; Peptides ; Physical Sciences ; Protein Aggregation, Pathological ; Protein Binding ; Proteins ; Simulation ; Studies ; β-Amyloid</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e113041-e113041</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Das et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Das et al 2014 Das et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33</citedby><cites>FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1627986157/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1627986157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25422897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Payel</creatorcontrib><creatorcontrib>Kang, Seung-gu</creatorcontrib><creatorcontrib>Temple, Sally</creatorcontrib><creatorcontrib>Belfort, Georges</creatorcontrib><title>Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.</description><subject>Agglomeration</subject><subject>alpha-Crystallin B Chain - metabolism</subject><subject>Alzheimer's disease</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biology and Life Sciences</subject><subject>Chemical properties</subject><subject>Crystal structure</subject><subject>Crystallin</subject><subject>Crystallinity</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Experiments</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Lysozyme</subject><subject>Medical treatment</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Monomers</subject><subject>Muramidase - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Oligomers</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Protein Aggregation, Pathological</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Studies</subject><subject>β-Amyloid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLguiLXZPmoa0vhOPwYeHgQA_fhmmTbLO0TS9J1f32Znd7y1buhSSQMPnNfzKTTJK8xGiJSY4_bOzoemiXg-3VEmFMEMWPknNckmzBM0Qen-zPkmfebxBipOD8aXKWMZplRZmfJ3erPigHdTC2T61Oodu21sjU9I2pTLAuHZwNyvQ-_W1CczyvVIB0UEMwUvmPEfdm3YRUO9ulnW1VPbbgUrntoTO1T73pomEXxD9PnmhovXoxrRfJ7ZfPt1ffFtc3X1dXl9eLmpdZWFCUKyi1xqhSTEuGKOc6LwoAjikghXlMTiOZY6QL4EwywKRGqi6oqoCQi-T1QXZorRdTsbzAPMvLgmOWR2J1IKSFjRic6cBthQUj9gbr1gJcMHWrRMEhqrMMVCGpriSwggCwknGeS1mVUevTFG2sOiVr1QcH7Ux0ftKbRqztL0EzSlFBo8C7ScDZu1H5IDrja9W20Cs77u9dsDgJi-ibf9CHs5uoNcQETK9tjFvvRMUlxXlekpygSC0foOKQKr5b_FnaRPvM4f3MITJB_QlrGL0Xqx_f_5-9-Tln356wjYI2NN624_7LzEF6AGtnvXdKH4uMkdg1xn01xK4xxNQY0e3V6QMdne47gfwFEecK-g</recordid><startdate>20141125</startdate><enddate>20141125</enddate><creator>Das, Payel</creator><creator>Kang, Seung-gu</creator><creator>Temple, Sally</creator><creator>Belfort, Georges</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141125</creationdate><title>Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations</title><author>Das, Payel ; Kang, Seung-gu ; Temple, Sally ; Belfort, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agglomeration</topic><topic>alpha-Crystallin B Chain - metabolism</topic><topic>Alzheimer's disease</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biology and Life Sciences</topic><topic>Chemical properties</topic><topic>Crystal structure</topic><topic>Crystallin</topic><topic>Crystallinity</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Experiments</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Lysozyme</topic><topic>Medical treatment</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Monomers</topic><topic>Muramidase - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Oligomers</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Protein Aggregation, Pathological</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Studies</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Payel</creatorcontrib><creatorcontrib>Kang, Seung-gu</creatorcontrib><creatorcontrib>Temple, Sally</creatorcontrib><creatorcontrib>Belfort, Georges</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Payel</au><au>Kang, Seung-gu</au><au>Temple, Sally</au><au>Belfort, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-25</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e113041</spage><epage>e113041</epage><pages>e113041-e113041</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25422897</pmid><doi>10.1371/journal.pone.0113041</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-11, Vol.9 (11), p.e113041-e113041
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1627986157
source Publicly Available Content (ProQuest); PubMed Central
subjects Agglomeration
alpha-Crystallin B Chain - metabolism
Alzheimer's disease
Amino Acid Sequence
Amino acids
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Binding
Binding Sites
Biology and Life Sciences
Chemical properties
Crystal structure
Crystallin
Crystallinity
Electrostatic properties
Electrostatics
Experiments
Humans
Inhibitors
Lysozyme
Medical treatment
Molecular dynamics
Molecular Dynamics Simulation
Molecular Sequence Data
Monomers
Muramidase - metabolism
Neurodegenerative diseases
Oligomers
Peptides
Physical Sciences
Protein Aggregation, Pathological
Protein Binding
Proteins
Simulation
Studies
β-Amyloid
title Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20amyloid%20inhibitor%20proteins%20with%20amyloid%20beta%20peptides:%20insight%20from%20molecular%20dynamics%20simulations&rft.jtitle=PloS%20one&rft.au=Das,%20Payel&rft.date=2014-11-25&rft.volume=9&rft.issue=11&rft.spage=e113041&rft.epage=e113041&rft.pages=e113041-e113041&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0113041&rft_dat=%3Cgale_plos_%3EA417793730%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-407ea9ff10be5fd50466f788aa614a0e16932f0d710f8a65d5a13c0ec84eba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627986157&rft_id=info:pmid/25422897&rft_galeid=A417793730&rfr_iscdi=true