Loading…

Automated stitching of microtubule centerlines across serial electron tomograms

Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and cor...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-12, Vol.9 (12), p.e113222-e113222
Main Authors: Weber, Britta, Tranfield, Erin M, Höög, Johanna L, Baum, Daniel, Antony, Claude, Hyman, Tony, Verbavatz, Jean-Marc, Prohaska, Steffen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783
cites cdi_FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783
container_end_page e113222
container_issue 12
container_start_page e113222
container_title PloS one
container_volume 9
creator Weber, Britta
Tranfield, Erin M
Höög, Johanna L
Baum, Daniel
Antony, Claude
Hyman, Tony
Verbavatz, Jean-Marc
Prohaska, Steffen
description Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
doi_str_mv 10.1371/journal.pone.0113222
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1629337213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416675054</galeid><doaj_id>oai_doaj_org_article_9d388042543a4d068c1d8df8d6a00d06</doaj_id><sourcerecordid>A416675054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLgujFjPlo0_RGGBY_BhYG_LoNaXLayZBpxiQV_femO91lKnshvUhz-pw3PW_eLHuO0QrTCr_bu8H30q6OrocVwpgSQh5kl7imZMkIog_P3i-yJyHsESopZ-xxdkHKgnJc8Mtsux6iO8gIOg_RRLUzfZe7Nj8Y5V0cmsFCrqCP4K3pIeQylUPIA3gjbQ4WVPSuz5OG67w8hKfZo1baAM-mdZF9__jh29Xn5fX20-Zqfb1UrCZxiTXRirelKqhUGtdtU0JVMCYbXCrdSMwgrVxy1TJoK2jrEmlCQDea1rTidJG9POkerQti8iIIzEhNaUUwTcTmRGgn9-LozUH6P8JJI24KzndC-miUBVFryjkqRldkoRHjCmuuW66ZRCjtk9b76bShOYAeDfHSzkTnX3qzE537JQpS1JzXSeDNJODdzwFCFAcTFFgre3DD6b_rqkLViL76B71_uonqZBrA9K1L56pRVKwLzFhVojTNIlvdQ6VHQ7rgFJzWpPqs4e2sITERfsdODiGIzdcv_89uf8zZ12fsDqSNu-DsEI3rwxwsTuBNzjy0dyZjJMbc37ohxtyLKfep7cX5Bd013Qad_gVGyP7a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629337213</pqid></control><display><type>article</type><title>Automated stitching of microtubule centerlines across serial electron tomograms</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Weber, Britta ; Tranfield, Erin M ; Höög, Johanna L ; Baum, Daniel ; Antony, Claude ; Hyman, Tony ; Verbavatz, Jean-Marc ; Prohaska, Steffen</creator><creatorcontrib>Weber, Britta ; Tranfield, Erin M ; Höög, Johanna L ; Baum, Daniel ; Antony, Claude ; Hyman, Tony ; Verbavatz, Jean-Marc ; Prohaska, Steffen</creatorcontrib><description>Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0113222</identifier><identifier>PMID: 25438148</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alignment ; Animals ; Automation ; Biology and Life Sciences ; Boundaries ; Caenorhabditis elegans - cytology ; Cell cycle ; Cell division ; Computation ; Computer applications ; Convergence ; Deformation ; Elasticity ; Electron Microscope Tomography ; Electrons ; Image Processing, Computer-Assisted - methods ; Iterative methods ; Laboratories ; Markov processes ; Matching ; Meiosis ; Methods ; Microscopy ; Microtubules ; Microtubules - metabolism ; Molecular biology ; Oocytes - cytology ; Physical Sciences ; Propagation ; Random variables ; Research and Analysis Methods ; Software ; Spindle Apparatus - metabolism ; Stitching ; Tomography ; Trypanosoma brucei brucei - cytology ; Xenopus laevis</subject><ispartof>PloS one, 2014-12, Vol.9 (12), p.e113222-e113222</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Weber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Weber et al 2014 Weber et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783</citedby><cites>FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1629337213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1629337213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25438148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Britta</creatorcontrib><creatorcontrib>Tranfield, Erin M</creatorcontrib><creatorcontrib>Höög, Johanna L</creatorcontrib><creatorcontrib>Baum, Daniel</creatorcontrib><creatorcontrib>Antony, Claude</creatorcontrib><creatorcontrib>Hyman, Tony</creatorcontrib><creatorcontrib>Verbavatz, Jean-Marc</creatorcontrib><creatorcontrib>Prohaska, Steffen</creatorcontrib><title>Automated stitching of microtubule centerlines across serial electron tomograms</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Animals</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Boundaries</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Convergence</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Electron Microscope Tomography</subject><subject>Electrons</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Iterative methods</subject><subject>Laboratories</subject><subject>Markov processes</subject><subject>Matching</subject><subject>Meiosis</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Molecular biology</subject><subject>Oocytes - cytology</subject><subject>Physical Sciences</subject><subject>Propagation</subject><subject>Random variables</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Spindle Apparatus - metabolism</subject><subject>Stitching</subject><subject>Tomography</subject><subject>Trypanosoma brucei brucei - cytology</subject><subject>Xenopus laevis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLgujFjPlo0_RGGBY_BhYG_LoNaXLayZBpxiQV_femO91lKnshvUhz-pw3PW_eLHuO0QrTCr_bu8H30q6OrocVwpgSQh5kl7imZMkIog_P3i-yJyHsESopZ-xxdkHKgnJc8Mtsux6iO8gIOg_RRLUzfZe7Nj8Y5V0cmsFCrqCP4K3pIeQylUPIA3gjbQ4WVPSuz5OG67w8hKfZo1baAM-mdZF9__jh29Xn5fX20-Zqfb1UrCZxiTXRirelKqhUGtdtU0JVMCYbXCrdSMwgrVxy1TJoK2jrEmlCQDea1rTidJG9POkerQti8iIIzEhNaUUwTcTmRGgn9-LozUH6P8JJI24KzndC-miUBVFryjkqRldkoRHjCmuuW66ZRCjtk9b76bShOYAeDfHSzkTnX3qzE537JQpS1JzXSeDNJODdzwFCFAcTFFgre3DD6b_rqkLViL76B71_uonqZBrA9K1L56pRVKwLzFhVojTNIlvdQ6VHQ7rgFJzWpPqs4e2sITERfsdODiGIzdcv_89uf8zZ12fsDqSNu-DsEI3rwxwsTuBNzjy0dyZjJMbc37ohxtyLKfep7cX5Bd013Qad_gVGyP7a</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Weber, Britta</creator><creator>Tranfield, Erin M</creator><creator>Höög, Johanna L</creator><creator>Baum, Daniel</creator><creator>Antony, Claude</creator><creator>Hyman, Tony</creator><creator>Verbavatz, Jean-Marc</creator><creator>Prohaska, Steffen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141201</creationdate><title>Automated stitching of microtubule centerlines across serial electron tomograms</title><author>Weber, Britta ; Tranfield, Erin M ; Höög, Johanna L ; Baum, Daniel ; Antony, Claude ; Hyman, Tony ; Verbavatz, Jean-Marc ; Prohaska, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Animals</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Boundaries</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Convergence</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Electron Microscope Tomography</topic><topic>Electrons</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Iterative methods</topic><topic>Laboratories</topic><topic>Markov processes</topic><topic>Matching</topic><topic>Meiosis</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Molecular biology</topic><topic>Oocytes - cytology</topic><topic>Physical Sciences</topic><topic>Propagation</topic><topic>Random variables</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Spindle Apparatus - metabolism</topic><topic>Stitching</topic><topic>Tomography</topic><topic>Trypanosoma brucei brucei - cytology</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Britta</creatorcontrib><creatorcontrib>Tranfield, Erin M</creatorcontrib><creatorcontrib>Höög, Johanna L</creatorcontrib><creatorcontrib>Baum, Daniel</creatorcontrib><creatorcontrib>Antony, Claude</creatorcontrib><creatorcontrib>Hyman, Tony</creatorcontrib><creatorcontrib>Verbavatz, Jean-Marc</creatorcontrib><creatorcontrib>Prohaska, Steffen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Britta</au><au>Tranfield, Erin M</au><au>Höög, Johanna L</au><au>Baum, Daniel</au><au>Antony, Claude</au><au>Hyman, Tony</au><au>Verbavatz, Jean-Marc</au><au>Prohaska, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated stitching of microtubule centerlines across serial electron tomograms</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>9</volume><issue>12</issue><spage>e113222</spage><epage>e113222</epage><pages>e113222-e113222</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25438148</pmid><doi>10.1371/journal.pone.0113222</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-12, Vol.9 (12), p.e113222-e113222
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1629337213
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Alignment
Animals
Automation
Biology and Life Sciences
Boundaries
Caenorhabditis elegans - cytology
Cell cycle
Cell division
Computation
Computer applications
Convergence
Deformation
Elasticity
Electron Microscope Tomography
Electrons
Image Processing, Computer-Assisted - methods
Iterative methods
Laboratories
Markov processes
Matching
Meiosis
Methods
Microscopy
Microtubules
Microtubules - metabolism
Molecular biology
Oocytes - cytology
Physical Sciences
Propagation
Random variables
Research and Analysis Methods
Software
Spindle Apparatus - metabolism
Stitching
Tomography
Trypanosoma brucei brucei - cytology
Xenopus laevis
title Automated stitching of microtubule centerlines across serial electron tomograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20stitching%20of%20microtubule%20centerlines%20across%20serial%20electron%20tomograms&rft.jtitle=PloS%20one&rft.au=Weber,%20Britta&rft.date=2014-12-01&rft.volume=9&rft.issue=12&rft.spage=e113222&rft.epage=e113222&rft.pages=e113222-e113222&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0113222&rft_dat=%3Cgale_plos_%3EA416675054%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-1d2dc8f5c43acd19fb5e7466ab15cdba16e5cd8a8cf6ef7ef950d22edbd393783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1629337213&rft_id=info:pmid/25438148&rft_galeid=A416675054&rfr_iscdi=true