Loading…
LOX-1 plays an important role in ischemia-induced angiogenesis of limbs
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during...
Saved in:
Published in: | PloS one 2014-12, Vol.9 (12), p.e114542-e114542 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943 |
---|---|
cites | cdi_FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943 |
container_end_page | e114542 |
container_issue | 12 |
container_start_page | e114542 |
container_title | PloS one |
container_volume | 9 |
creator | Shiraki, Takeru Aoyama, Takuma Yokoyama, Chiharu Hayakawa, Yuka Tanaka, Toshiki Nishigaki, Kazuhiko Sawamura, Tatsuya Minatoguchi, Shinya |
description | LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF. |
doi_str_mv | 10.1371/journal.pone.0114542 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1636808909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418529971</galeid><doaj_id>oai_doaj_org_article_ed6b2cdf157c4026831dc3d47157a8fa</doaj_id><sourcerecordid>A418529971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A9GCsOhFx3w1bW6EZdF1YGDAL7wLaZJ2MqTJbNKK--_N7HSXqeyF5CLh5DnvyTl5s-wVBAuIK_hh68fghF3svNMLACEpCXqSnUKGUUERwE-PzifZWYxbAEpcU_o8O0FlCUnFqtPserX-VcB8Z8VtzIXLTb_zYRBuyIO3OjcpEuVG90YUxqlRapWozvhOOx1NzH2bW9M38UX2rBU26pfTfp79-Pzp-9WXYrW-Xl5drgpZAzQUVJawbSRopCgZIjWALWugZKipMGW1YgARWMGKaKWowpiiRlMqtZC6rDQj-Dx7c9DdWR_5NIPIIcW0BjUDLBHLA6G82PJdML0It9wLw-8CPnRchMFIq7lWtEFStbCsJAGI1hgqiRWpUkDUrUhaH6dqY9NrJbUbgrAz0fmNMxve-d-cIFpVuE4C7yaB4G9GHQfep3lqa4XTfrx7N2Op9RIm9O0_6OPdTVQnUgPGtT7VlXtRfklgXaIkt9daPEKlpdJPymSY1qT4LOH9LCExg_4zdGKMkS-_ff1_dv1zzl4csRst7LCJ3o6D8S7OQXIAZfAxBt0-DBkCvvf7_TT43u988ntKe338QQ9J9wbHfwHI5flX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636808909</pqid></control><display><type>article</type><title>LOX-1 plays an important role in ischemia-induced angiogenesis of limbs</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Shiraki, Takeru ; Aoyama, Takuma ; Yokoyama, Chiharu ; Hayakawa, Yuka ; Tanaka, Toshiki ; Nishigaki, Kazuhiko ; Sawamura, Tatsuya ; Minatoguchi, Shinya</creator><contributor>Ushio-Fukai, Masuko</contributor><creatorcontrib>Shiraki, Takeru ; Aoyama, Takuma ; Yokoyama, Chiharu ; Hayakawa, Yuka ; Tanaka, Toshiki ; Nishigaki, Kazuhiko ; Sawamura, Tatsuya ; Minatoguchi, Shinya ; Ushio-Fukai, Masuko</creatorcontrib><description>LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0114542</identifier><identifier>PMID: 25514797</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adhesion ; AKT protein ; Analysis ; Angiogenesis ; Animal tissues ; Animals ; Arteriosclerosis ; Atherosclerosis ; Biology and Life Sciences ; Blood ; Blood flow ; Blotting, Western ; Bone marrow ; Cardiology ; Cell adhesion ; Cell adhesion molecules ; CYBB protein ; Density ; Doppler effect ; Endothelial cells ; Enzyme Activation - physiology ; Extremities - blood supply ; Gene Expression Regulation - physiology ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Immunohistochemistry ; Infiltration ; Inflammation ; Ischemia ; Ischemia - complications ; Laser-Doppler Flowmetry ; Lasers ; Lectins ; Lipoproteins (low density) ; Liquid oxygen ; Low density lipoprotein ; Low density lipoprotein receptors ; Low density lipoproteins ; LOX-1 protein ; Macrophages ; MAP kinase ; Medicine ; Medicine and Health Sciences ; Mice ; Mice, Knockout ; Muscles ; Neovascularization, Pathologic - etiology ; Neovascularization, Pathologic - physiopathology ; NF-κB protein ; Phosphorylation ; Physiology ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Receptor density ; Rodents ; Scavenger Receptors, Class E - genetics ; Scavenger Receptors, Class E - metabolism ; Surgery ; University graduates ; Vascular cell adhesion molecule 1 ; Vascular Cell Adhesion Molecule-1 - metabolism ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Veins & arteries</subject><ispartof>PloS one, 2014-12, Vol.9 (12), p.e114542-e114542</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Shiraki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Shiraki et al 2014 Shiraki et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943</citedby><cites>FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1636808909/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1636808909?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25514797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ushio-Fukai, Masuko</contributor><creatorcontrib>Shiraki, Takeru</creatorcontrib><creatorcontrib>Aoyama, Takuma</creatorcontrib><creatorcontrib>Yokoyama, Chiharu</creatorcontrib><creatorcontrib>Hayakawa, Yuka</creatorcontrib><creatorcontrib>Tanaka, Toshiki</creatorcontrib><creatorcontrib>Nishigaki, Kazuhiko</creatorcontrib><creatorcontrib>Sawamura, Tatsuya</creatorcontrib><creatorcontrib>Minatoguchi, Shinya</creatorcontrib><title>LOX-1 plays an important role in ischemia-induced angiogenesis of limbs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.</description><subject>Adhesion</subject><subject>AKT protein</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blotting, Western</subject><subject>Bone marrow</subject><subject>Cardiology</subject><subject>Cell adhesion</subject><subject>Cell adhesion molecules</subject><subject>CYBB protein</subject><subject>Density</subject><subject>Doppler effect</subject><subject>Endothelial cells</subject><subject>Enzyme Activation - physiology</subject><subject>Extremities - blood supply</subject><subject>Gene Expression Regulation - physiology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Immunohistochemistry</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Ischemia</subject><subject>Ischemia - complications</subject><subject>Laser-Doppler Flowmetry</subject><subject>Lasers</subject><subject>Lectins</subject><subject>Lipoproteins (low density)</subject><subject>Liquid oxygen</subject><subject>Low density lipoprotein</subject><subject>Low density lipoprotein receptors</subject><subject>Low density lipoproteins</subject><subject>LOX-1 protein</subject><subject>Macrophages</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Muscles</subject><subject>Neovascularization, Pathologic - etiology</subject><subject>Neovascularization, Pathologic - physiopathology</subject><subject>NF-κB protein</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor density</subject><subject>Rodents</subject><subject>Scavenger Receptors, Class E - genetics</subject><subject>Scavenger Receptors, Class E - metabolism</subject><subject>Surgery</subject><subject>University graduates</subject><subject>Vascular cell adhesion molecule 1</subject><subject>Vascular Cell Adhesion Molecule-1 - metabolism</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Veins & arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A9GCsOhFx3w1bW6EZdF1YGDAL7wLaZJ2MqTJbNKK--_N7HSXqeyF5CLh5DnvyTl5s-wVBAuIK_hh68fghF3svNMLACEpCXqSnUKGUUERwE-PzifZWYxbAEpcU_o8O0FlCUnFqtPserX-VcB8Z8VtzIXLTb_zYRBuyIO3OjcpEuVG90YUxqlRapWozvhOOx1NzH2bW9M38UX2rBU26pfTfp79-Pzp-9WXYrW-Xl5drgpZAzQUVJawbSRopCgZIjWALWugZKipMGW1YgARWMGKaKWowpiiRlMqtZC6rDQj-Dx7c9DdWR_5NIPIIcW0BjUDLBHLA6G82PJdML0It9wLw-8CPnRchMFIq7lWtEFStbCsJAGI1hgqiRWpUkDUrUhaH6dqY9NrJbUbgrAz0fmNMxve-d-cIFpVuE4C7yaB4G9GHQfep3lqa4XTfrx7N2Op9RIm9O0_6OPdTVQnUgPGtT7VlXtRfklgXaIkt9daPEKlpdJPymSY1qT4LOH9LCExg_4zdGKMkS-_ff1_dv1zzl4csRst7LCJ3o6D8S7OQXIAZfAxBt0-DBkCvvf7_TT43u988ntKe338QQ9J9wbHfwHI5flX</recordid><startdate>20141216</startdate><enddate>20141216</enddate><creator>Shiraki, Takeru</creator><creator>Aoyama, Takuma</creator><creator>Yokoyama, Chiharu</creator><creator>Hayakawa, Yuka</creator><creator>Tanaka, Toshiki</creator><creator>Nishigaki, Kazuhiko</creator><creator>Sawamura, Tatsuya</creator><creator>Minatoguchi, Shinya</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141216</creationdate><title>LOX-1 plays an important role in ischemia-induced angiogenesis of limbs</title><author>Shiraki, Takeru ; Aoyama, Takuma ; Yokoyama, Chiharu ; Hayakawa, Yuka ; Tanaka, Toshiki ; Nishigaki, Kazuhiko ; Sawamura, Tatsuya ; Minatoguchi, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion</topic><topic>AKT protein</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blotting, Western</topic><topic>Bone marrow</topic><topic>Cardiology</topic><topic>Cell adhesion</topic><topic>Cell adhesion molecules</topic><topic>CYBB protein</topic><topic>Density</topic><topic>Doppler effect</topic><topic>Endothelial cells</topic><topic>Enzyme Activation - physiology</topic><topic>Extremities - blood supply</topic><topic>Gene Expression Regulation - physiology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Immunohistochemistry</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Ischemia</topic><topic>Ischemia - complications</topic><topic>Laser-Doppler Flowmetry</topic><topic>Lasers</topic><topic>Lectins</topic><topic>Lipoproteins (low density)</topic><topic>Liquid oxygen</topic><topic>Low density lipoprotein</topic><topic>Low density lipoprotein receptors</topic><topic>Low density lipoproteins</topic><topic>LOX-1 protein</topic><topic>Macrophages</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Muscles</topic><topic>Neovascularization, Pathologic - etiology</topic><topic>Neovascularization, Pathologic - physiopathology</topic><topic>NF-κB protein</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor density</topic><topic>Rodents</topic><topic>Scavenger Receptors, Class E - genetics</topic><topic>Scavenger Receptors, Class E - metabolism</topic><topic>Surgery</topic><topic>University graduates</topic><topic>Vascular cell adhesion molecule 1</topic><topic>Vascular Cell Adhesion Molecule-1 - metabolism</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiraki, Takeru</creatorcontrib><creatorcontrib>Aoyama, Takuma</creatorcontrib><creatorcontrib>Yokoyama, Chiharu</creatorcontrib><creatorcontrib>Hayakawa, Yuka</creatorcontrib><creatorcontrib>Tanaka, Toshiki</creatorcontrib><creatorcontrib>Nishigaki, Kazuhiko</creatorcontrib><creatorcontrib>Sawamura, Tatsuya</creatorcontrib><creatorcontrib>Minatoguchi, Shinya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiraki, Takeru</au><au>Aoyama, Takuma</au><au>Yokoyama, Chiharu</au><au>Hayakawa, Yuka</au><au>Tanaka, Toshiki</au><au>Nishigaki, Kazuhiko</au><au>Sawamura, Tatsuya</au><au>Minatoguchi, Shinya</au><au>Ushio-Fukai, Masuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LOX-1 plays an important role in ischemia-induced angiogenesis of limbs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-12-16</date><risdate>2014</risdate><volume>9</volume><issue>12</issue><spage>e114542</spage><epage>e114542</epage><pages>e114542-e114542</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25514797</pmid><doi>10.1371/journal.pone.0114542</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-12, Vol.9 (12), p.e114542-e114542 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1636808909 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Adhesion AKT protein Analysis Angiogenesis Animal tissues Animals Arteriosclerosis Atherosclerosis Biology and Life Sciences Blood Blood flow Blotting, Western Bone marrow Cardiology Cell adhesion Cell adhesion molecules CYBB protein Density Doppler effect Endothelial cells Enzyme Activation - physiology Extremities - blood supply Gene Expression Regulation - physiology Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Immunohistochemistry Infiltration Inflammation Ischemia Ischemia - complications Laser-Doppler Flowmetry Lasers Lectins Lipoproteins (low density) Liquid oxygen Low density lipoprotein Low density lipoprotein receptors Low density lipoproteins LOX-1 protein Macrophages MAP kinase Medicine Medicine and Health Sciences Mice Mice, Knockout Muscles Neovascularization, Pathologic - etiology Neovascularization, Pathologic - physiopathology NF-κB protein Phosphorylation Physiology Reactive oxygen species Reactive Oxygen Species - metabolism Receptor density Rodents Scavenger Receptors, Class E - genetics Scavenger Receptors, Class E - metabolism Surgery University graduates Vascular cell adhesion molecule 1 Vascular Cell Adhesion Molecule-1 - metabolism Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism Veins & arteries |
title | LOX-1 plays an important role in ischemia-induced angiogenesis of limbs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LOX-1%20plays%20an%20important%20role%20in%20ischemia-induced%20angiogenesis%20of%20limbs&rft.jtitle=PloS%20one&rft.au=Shiraki,%20Takeru&rft.date=2014-12-16&rft.volume=9&rft.issue=12&rft.spage=e114542&rft.epage=e114542&rft.pages=e114542-e114542&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0114542&rft_dat=%3Cgale_plos_%3EA418529971%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c802t-6c51fbc0bca5924801f9b1c92b73698d902417174edd6d3362be66ceace57e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1636808909&rft_id=info:pmid/25514797&rft_galeid=A418529971&rfr_iscdi=true |