Loading…
Optical clearing in dense connective tissues to visualize cellular connectivity in situ
Visualizing the three-dimensional morphology and spatial patterning of cells embedded deep within dense connective tissues of the musculoskeletal system has been possible only by utilizing destructive techniques. Here we utilize fructose-based clearing solutions to image cell connectivity and deep t...
Saved in:
Published in: | PloS one 2015-01, Vol.10 (1), p.e0116662-e0116662 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Visualizing the three-dimensional morphology and spatial patterning of cells embedded deep within dense connective tissues of the musculoskeletal system has been possible only by utilizing destructive techniques. Here we utilize fructose-based clearing solutions to image cell connectivity and deep tissue-scale patterning in situ by standard confocal microscopy. Optical clearing takes advantage of refractive index matching of tissue and the embedding medium to visualize light transmission through a broad range of bovine and whole mount murine tissues, including cartilage, bone, and ligament, of the head and hindlimb. Using non-destructive methods, we show for the first time intercellular chondrocyte connections throughout the bulk of cartilage, and we reveal in situ patterns of osteocyte processes and the lacunar-canalicular system deep within mineralized cortical bone. Optical clearing of connective tissues is expected to find broad application for the study of cell responses in normal physiology and disease pathology. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0116662 |