Loading…

Evolving robust gene regulatory networks

Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-01, Vol.10 (1), p.e0116258-e0116258
Main Authors: Noman, Nasimul, Monjo, Taku, Moscato, Pablo, Iba, Hitoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503
cites cdi_FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503
container_end_page e0116258
container_issue 1
container_start_page e0116258
container_title PloS one
container_volume 10
creator Noman, Nasimul
Monjo, Taku
Moscato, Pablo
Iba, Hitoshi
description Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems.
doi_str_mv 10.1371/journal.pone.0116258
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1651731179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422547761</galeid><doaj_id>oai_doaj_org_article_efa7e1d7bb3b46f4b46742362b054427</doaj_id><sourcerecordid>A422547761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgex2Fr9B6ILgtSLXfOdnRuhlKoLhYJftyGTOTM7azZZk8xq_73Z7rTslF5IIAnJc95zTvIWxSuMZphK_GHl--C0nW28gxnCWBA-f1Kc4JKSqSCIPj3YHxfPY1whxOlciGfFMeECC8T5SXF2ufV227l2EnzVxzRpwcEkQNtbnXy4mThIf3z4FV8UR422EV4O62nx49Pl94sv06vrz4uL86upESVJU6YBkUaDLudCIsLlvGZlCVzmArWWQLipTcNKyoUwWFRVBZJqaqBhrGQc0dPizV53Y31UQ5NRYcGxpBjLMhOLPVF7vVKb0K11uFFed-r2wIdW6ZA6Y0FBk1PiWlYVrZhoWJ4kI1SQCnHGiMxaH4dsfbWG2oBLQduR6PjGdUvV-q1iFLE53ZV7NggE_7uHmNS6iwas1Q58f1s3YbhklGT07QP08e4GqtW5gc41Puc1O1F1zgjhTEqBMzV7hMqjhnVnsiOaLp-PAt6PAjKT4G9qdR-jWnz7-v_s9c8x--6AXYK2aRm97VPnXRyDbA-a4GMM0Nw_MkZqZ-i711A7Q6vB0Dns9eEH3QfdOZj-A71_7lI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651731179</pqid></control><display><type>article</type><title>Evolving robust gene regulatory networks</title><source>Publicly Available Content (ProQuest)</source><source>PubMed</source><creator>Noman, Nasimul ; Monjo, Taku ; Moscato, Pablo ; Iba, Hitoshi</creator><contributor>de la Fuente, Alberto</contributor><creatorcontrib>Noman, Nasimul ; Monjo, Taku ; Moscato, Pablo ; Iba, Hitoshi ; de la Fuente, Alberto</creatorcontrib><description>Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0116258</identifier><identifier>PMID: 25616055</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Architectural engineering ; Bioinformatics ; Bistability ; CAD ; Circadian rhythm ; Complexity ; Computational Biology - methods ; Computer aided design ; Computer engineering ; Computer science ; Computer simulation ; E coli ; Electrical engineering ; Evolution ; Evolution (Biology) ; Evolutionary algorithms ; Fitness ; Gene expression ; Gene Regulatory Networks ; Genes ; Genetic algorithms ; Genomes ; Mammals ; Models, Genetic ; Monte Carlo Method ; Monte Carlo simulation ; Network topologies ; Reproductive fitness ; Researchers ; Robustness (mathematics) ; Selection, Genetic ; Studies ; Synthetic biology ; Topology</subject><ispartof>PloS one, 2015-01, Vol.10 (1), p.e0116258-e0116258</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Noman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Noman et al 2015 Noman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503</citedby><cites>FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1651731179/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1651731179?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25616055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>de la Fuente, Alberto</contributor><creatorcontrib>Noman, Nasimul</creatorcontrib><creatorcontrib>Monjo, Taku</creatorcontrib><creatorcontrib>Moscato, Pablo</creatorcontrib><creatorcontrib>Iba, Hitoshi</creatorcontrib><title>Evolving robust gene regulatory networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Architectural engineering</subject><subject>Bioinformatics</subject><subject>Bistability</subject><subject>CAD</subject><subject>Circadian rhythm</subject><subject>Complexity</subject><subject>Computational Biology - methods</subject><subject>Computer aided design</subject><subject>Computer engineering</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>E coli</subject><subject>Electrical engineering</subject><subject>Evolution</subject><subject>Evolution (Biology)</subject><subject>Evolutionary algorithms</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic algorithms</subject><subject>Genomes</subject><subject>Mammals</subject><subject>Models, Genetic</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Network topologies</subject><subject>Reproductive fitness</subject><subject>Researchers</subject><subject>Robustness (mathematics)</subject><subject>Selection, Genetic</subject><subject>Studies</subject><subject>Synthetic biology</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgex2Fr9B6ILgtSLXfOdnRuhlKoLhYJftyGTOTM7azZZk8xq_73Z7rTslF5IIAnJc95zTvIWxSuMZphK_GHl--C0nW28gxnCWBA-f1Kc4JKSqSCIPj3YHxfPY1whxOlciGfFMeECC8T5SXF2ufV227l2EnzVxzRpwcEkQNtbnXy4mThIf3z4FV8UR422EV4O62nx49Pl94sv06vrz4uL86upESVJU6YBkUaDLudCIsLlvGZlCVzmArWWQLipTcNKyoUwWFRVBZJqaqBhrGQc0dPizV53Y31UQ5NRYcGxpBjLMhOLPVF7vVKb0K11uFFed-r2wIdW6ZA6Y0FBk1PiWlYVrZhoWJ4kI1SQCnHGiMxaH4dsfbWG2oBLQduR6PjGdUvV-q1iFLE53ZV7NggE_7uHmNS6iwas1Q58f1s3YbhklGT07QP08e4GqtW5gc41Puc1O1F1zgjhTEqBMzV7hMqjhnVnsiOaLp-PAt6PAjKT4G9qdR-jWnz7-v_s9c8x--6AXYK2aRm97VPnXRyDbA-a4GMM0Nw_MkZqZ-i711A7Q6vB0Dns9eEH3QfdOZj-A71_7lI</recordid><startdate>20150123</startdate><enddate>20150123</enddate><creator>Noman, Nasimul</creator><creator>Monjo, Taku</creator><creator>Moscato, Pablo</creator><creator>Iba, Hitoshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150123</creationdate><title>Evolving robust gene regulatory networks</title><author>Noman, Nasimul ; Monjo, Taku ; Moscato, Pablo ; Iba, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Architectural engineering</topic><topic>Bioinformatics</topic><topic>Bistability</topic><topic>CAD</topic><topic>Circadian rhythm</topic><topic>Complexity</topic><topic>Computational Biology - methods</topic><topic>Computer aided design</topic><topic>Computer engineering</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>E coli</topic><topic>Electrical engineering</topic><topic>Evolution</topic><topic>Evolution (Biology)</topic><topic>Evolutionary algorithms</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic algorithms</topic><topic>Genomes</topic><topic>Mammals</topic><topic>Models, Genetic</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Network topologies</topic><topic>Reproductive fitness</topic><topic>Researchers</topic><topic>Robustness (mathematics)</topic><topic>Selection, Genetic</topic><topic>Studies</topic><topic>Synthetic biology</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noman, Nasimul</creatorcontrib><creatorcontrib>Monjo, Taku</creatorcontrib><creatorcontrib>Moscato, Pablo</creatorcontrib><creatorcontrib>Iba, Hitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noman, Nasimul</au><au>Monjo, Taku</au><au>Moscato, Pablo</au><au>Iba, Hitoshi</au><au>de la Fuente, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolving robust gene regulatory networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-01-23</date><risdate>2015</risdate><volume>10</volume><issue>1</issue><spage>e0116258</spage><epage>e0116258</epage><pages>e0116258-e0116258</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25616055</pmid><doi>10.1371/journal.pone.0116258</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-01, Vol.10 (1), p.e0116258-e0116258
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1651731179
source Publicly Available Content (ProQuest); PubMed
subjects Algorithms
Analysis
Architectural engineering
Bioinformatics
Bistability
CAD
Circadian rhythm
Complexity
Computational Biology - methods
Computer aided design
Computer engineering
Computer science
Computer simulation
E coli
Electrical engineering
Evolution
Evolution (Biology)
Evolutionary algorithms
Fitness
Gene expression
Gene Regulatory Networks
Genes
Genetic algorithms
Genomes
Mammals
Models, Genetic
Monte Carlo Method
Monte Carlo simulation
Network topologies
Reproductive fitness
Researchers
Robustness (mathematics)
Selection, Genetic
Studies
Synthetic biology
Topology
title Evolving robust gene regulatory networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolving%20robust%20gene%20regulatory%20networks&rft.jtitle=PloS%20one&rft.au=Noman,%20Nasimul&rft.date=2015-01-23&rft.volume=10&rft.issue=1&rft.spage=e0116258&rft.epage=e0116258&rft.pages=e0116258-e0116258&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0116258&rft_dat=%3Cgale_plos_%3EA422547761%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-4ae02faea986702578d499e57116aa7e25cdcf493566c16bbbe73a3cef4494503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651731179&rft_id=info:pmid/25616055&rft_galeid=A422547761&rfr_iscdi=true