Loading…

In vivo tractography of fetal association fibers

Association fibers connect different cortical areas within the same hemisphere and constitute an essential anatomical substrate for a diverse range of higher cognitive functions. So far a comprehensive description of the prenatal in vivo morphology of these functionally important pathways is lacking...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-03, Vol.10 (3), p.e0119536-e0119536
Main Authors: Mitter, Christian, Prayer, Daniela, Brugger, Peter C, Weber, Michael, Kasprian, Gregor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Association fibers connect different cortical areas within the same hemisphere and constitute an essential anatomical substrate for a diverse range of higher cognitive functions. So far a comprehensive description of the prenatal in vivo morphology of these functionally important pathways is lacking. In the present study, diffusion tensor imaging (DTI) and tractography were used to visualize major association fiber tracts and the fornix in utero in preselected non-motion degraded DTI datasets of 24 living unsedated fetuses between 20 and 34 gestational weeks (GW). The uncinate fasciculus and inferior fronto-occipital fasciculus were depicted as early as 20 GW, while in vivo 3D visualization of the inferior longitudinal fasciculus, cingulum and fornix was successful in older fetuses during the third trimester. Provided optimal scanning conditions, in utero DTI and tractography have the potential to provide a more accurate anatomical definition of developing neuronal networks in the human fetal brain. Knowledge about the normal prenatal 3D association tract morphology may serve as reference for their assessment in common developmental diseases.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0119536