Loading…
In vivo regulation of erythropoiesis by chemically inducible dimerization of the erythropoietin receptor intracellular domain
Erythropoietin (Epo) and its receptor (EpoR) are required for the regulation of erythropoiesis. Epo binds to the EpoR homodimer on the surface of erythroid progenitors and erythroblasts, and positions the intracellular domains of the homodimer to be in close proximity with each other. This conformat...
Saved in:
Published in: | PloS one 2015-03, Vol.10 (3), p.e0119442-e0119442 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3 |
container_end_page | e0119442 |
container_issue | 3 |
container_start_page | e0119442 |
container_title | PloS one |
container_volume | 10 |
creator | Suzuki, Norio Mukai, Harumi Y Yamamoto, Masayuki |
description | Erythropoietin (Epo) and its receptor (EpoR) are required for the regulation of erythropoiesis. Epo binds to the EpoR homodimer on the surface of erythroid progenitors and erythroblasts, and positions the intracellular domains of the homodimer to be in close proximity with each other. This conformational change is sufficient for the initiation of Epo-EpoR signal transduction. Here, we established a system of chemically regulated erythropoiesis in transgenic mice expressing a modified EpoR intracellular domain (amino acids 247-406) in which dimerization is induced using a specific compound (chemical inducer of dimerization, CID). Erythropoiesis is reversibly induced by oral administration of the CID to the transgenic mice. Because transgene expression is limited to hematopoietic cells by the Gata1 gene regulatory region, the effect of the CID is limited to erythropoiesis without adverse effects. Additionally, we show that the 160 amino acid sequence is the minimal essential domain of EpoR for intracellular signaling of chemically inducible erythropoiesis in vivo. We propose that the CID-dependent dimerization system combined with the EpoR intracellular domain and the Gata1 gene regulatory region generates a novel peroral strategy for the treatment of anemia. |
doi_str_mv | 10.1371/journal.pone.0119442 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1664782743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423858938</galeid><doaj_id>oai_doaj_org_article_2ae5d37f7a0541bdbbfd6263a62d84e0</doaj_id><sourcerecordid>A423858938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqk94Iy-LHwMKCX7chbU-nGdJmTNLBEfzvpjvdYSp7Ib1Imzzve3rOyUmS5xgtMeX43cYOrldmubU9LBHGBWPkQXKOC0oWOUH04cn7WfLE-w1CGRV5_jg5IxkvEKH4PPmz6tOd3tnUwXowKmjbp7ZJwe1D6-zWavDap-U-rVrodKWM2ae6r4dKlwbSWnfg9O-jLLRwKg26j74VbIN1URWcqsCYGMalte2U7p8mjxplPDyb1ovk-8cP364-L65vPq2uLq8XFc9EWFBeNSrLWMlAxZwQR4KposowFYTkBcsLwatCKMYBNzB-FaJAdVEqzGumgF4kLw--W2O9nCrnJc5zxgXhjEZidSBqqzZy63Sn3F5apeXthnVrqVzQlQFJFGQ15Q1XKGO4rMuyqXOSU5WTWjBA0ev9FG0oO6grGDM3M9P5Sa9bubY7yWieY1FEgzeTgbM_B_BBdtqPpVM92OH2vzOMY-44oq_-Qe_PbqLWKiag-8aOvRhN5SUjVGQxqIjU8h4qPvXY-njNGh33Z4K3M0FkAvwKazV4L1dfv_w_e_Njzr4-YVtQJrTemmG8Zn4OsgNYOeu9g-ZYZIzkOCV31ZDjlMhpSqLsxWmDjqK7saB_AbcZD10</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664782743</pqid></control><display><type>article</type><title>In vivo regulation of erythropoiesis by chemically inducible dimerization of the erythropoietin receptor intracellular domain</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Suzuki, Norio ; Mukai, Harumi Y ; Yamamoto, Masayuki</creator><contributor>Moura, Ivan Cruz</contributor><creatorcontrib>Suzuki, Norio ; Mukai, Harumi Y ; Yamamoto, Masayuki ; Moura, Ivan Cruz</creatorcontrib><description>Erythropoietin (Epo) and its receptor (EpoR) are required for the regulation of erythropoiesis. Epo binds to the EpoR homodimer on the surface of erythroid progenitors and erythroblasts, and positions the intracellular domains of the homodimer to be in close proximity with each other. This conformational change is sufficient for the initiation of Epo-EpoR signal transduction. Here, we established a system of chemically regulated erythropoiesis in transgenic mice expressing a modified EpoR intracellular domain (amino acids 247-406) in which dimerization is induced using a specific compound (chemical inducer of dimerization, CID). Erythropoiesis is reversibly induced by oral administration of the CID to the transgenic mice. Because transgene expression is limited to hematopoietic cells by the Gata1 gene regulatory region, the effect of the CID is limited to erythropoiesis without adverse effects. Additionally, we show that the 160 amino acid sequence is the minimal essential domain of EpoR for intracellular signaling of chemically inducible erythropoiesis in vivo. We propose that the CID-dependent dimerization system combined with the EpoR intracellular domain and the Gata1 gene regulatory region generates a novel peroral strategy for the treatment of anemia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0119442</identifier><identifier>PMID: 25790231</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acid sequence ; Amino Acid Sequence - genetics ; Amino acids ; Anemia ; Anemia - drug therapy ; Anemia - genetics ; Animals ; Biochemistry ; Cellular signal transduction ; Cytokines ; Dimerization ; Erythroblasts ; Erythropoiesis ; Erythropoiesis - drug effects ; Erythropoiesis - genetics ; Erythropoietin ; Erythropoietin - biosynthesis ; Erythropoietin - genetics ; GATA-1 protein ; GATA1 Transcription Factor - genetics ; Gene expression ; Gene Expression Regulation, Developmental - drug effects ; Genetic engineering ; Glycoproteins ; Hemopoiesis ; Intracellular ; Intracellular signalling ; Kinases ; Laboratory animals ; Medicine ; Mice ; Mice, Transgenic ; Oral administration ; Protein Multimerization - drug effects ; Protein Structure, Tertiary ; Proteins ; Receptors, Erythropoietin - biosynthesis ; Receptors, Erythropoietin - genetics ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Studies ; Tacrolimus - administration & dosage ; Tacrolimus - analogs & derivatives ; Transgenic animals ; Transgenic mice ; University graduates</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0119442-e0119442</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Suzuki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Suzuki et al 2015 Suzuki et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3</citedby><cites>FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1664782743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1664782743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25790231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moura, Ivan Cruz</contributor><creatorcontrib>Suzuki, Norio</creatorcontrib><creatorcontrib>Mukai, Harumi Y</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><title>In vivo regulation of erythropoiesis by chemically inducible dimerization of the erythropoietin receptor intracellular domain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Erythropoietin (Epo) and its receptor (EpoR) are required for the regulation of erythropoiesis. Epo binds to the EpoR homodimer on the surface of erythroid progenitors and erythroblasts, and positions the intracellular domains of the homodimer to be in close proximity with each other. This conformational change is sufficient for the initiation of Epo-EpoR signal transduction. Here, we established a system of chemically regulated erythropoiesis in transgenic mice expressing a modified EpoR intracellular domain (amino acids 247-406) in which dimerization is induced using a specific compound (chemical inducer of dimerization, CID). Erythropoiesis is reversibly induced by oral administration of the CID to the transgenic mice. Because transgene expression is limited to hematopoietic cells by the Gata1 gene regulatory region, the effect of the CID is limited to erythropoiesis without adverse effects. Additionally, we show that the 160 amino acid sequence is the minimal essential domain of EpoR for intracellular signaling of chemically inducible erythropoiesis in vivo. We propose that the CID-dependent dimerization system combined with the EpoR intracellular domain and the Gata1 gene regulatory region generates a novel peroral strategy for the treatment of anemia.</description><subject>Amino acid sequence</subject><subject>Amino Acid Sequence - genetics</subject><subject>Amino acids</subject><subject>Anemia</subject><subject>Anemia - drug therapy</subject><subject>Anemia - genetics</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Cellular signal transduction</subject><subject>Cytokines</subject><subject>Dimerization</subject><subject>Erythroblasts</subject><subject>Erythropoiesis</subject><subject>Erythropoiesis - drug effects</subject><subject>Erythropoiesis - genetics</subject><subject>Erythropoietin</subject><subject>Erythropoietin - biosynthesis</subject><subject>Erythropoietin - genetics</subject><subject>GATA-1 protein</subject><subject>GATA1 Transcription Factor - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Genetic engineering</subject><subject>Glycoproteins</subject><subject>Hemopoiesis</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Oral administration</subject><subject>Protein Multimerization - drug effects</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Receptors, Erythropoietin - biosynthesis</subject><subject>Receptors, Erythropoietin - genetics</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Studies</subject><subject>Tacrolimus - administration & dosage</subject><subject>Tacrolimus - analogs & derivatives</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>University graduates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqk94Iy-LHwMKCX7chbU-nGdJmTNLBEfzvpjvdYSp7Ib1Imzzve3rOyUmS5xgtMeX43cYOrldmubU9LBHGBWPkQXKOC0oWOUH04cn7WfLE-w1CGRV5_jg5IxkvEKH4PPmz6tOd3tnUwXowKmjbp7ZJwe1D6-zWavDap-U-rVrodKWM2ae6r4dKlwbSWnfg9O-jLLRwKg26j74VbIN1URWcqsCYGMalte2U7p8mjxplPDyb1ovk-8cP364-L65vPq2uLq8XFc9EWFBeNSrLWMlAxZwQR4KposowFYTkBcsLwatCKMYBNzB-FaJAdVEqzGumgF4kLw--W2O9nCrnJc5zxgXhjEZidSBqqzZy63Sn3F5apeXthnVrqVzQlQFJFGQ15Q1XKGO4rMuyqXOSU5WTWjBA0ev9FG0oO6grGDM3M9P5Sa9bubY7yWieY1FEgzeTgbM_B_BBdtqPpVM92OH2vzOMY-44oq_-Qe_PbqLWKiag-8aOvRhN5SUjVGQxqIjU8h4qPvXY-njNGh33Z4K3M0FkAvwKazV4L1dfv_w_e_Njzr4-YVtQJrTemmG8Zn4OsgNYOeu9g-ZYZIzkOCV31ZDjlMhpSqLsxWmDjqK7saB_AbcZD10</recordid><startdate>20150319</startdate><enddate>20150319</enddate><creator>Suzuki, Norio</creator><creator>Mukai, Harumi Y</creator><creator>Yamamoto, Masayuki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150319</creationdate><title>In vivo regulation of erythropoiesis by chemically inducible dimerization of the erythropoietin receptor intracellular domain</title><author>Suzuki, Norio ; Mukai, Harumi Y ; Yamamoto, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino acid sequence</topic><topic>Amino Acid Sequence - genetics</topic><topic>Amino acids</topic><topic>Anemia</topic><topic>Anemia - drug therapy</topic><topic>Anemia - genetics</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Cellular signal transduction</topic><topic>Cytokines</topic><topic>Dimerization</topic><topic>Erythroblasts</topic><topic>Erythropoiesis</topic><topic>Erythropoiesis - drug effects</topic><topic>Erythropoiesis - genetics</topic><topic>Erythropoietin</topic><topic>Erythropoietin - biosynthesis</topic><topic>Erythropoietin - genetics</topic><topic>GATA-1 protein</topic><topic>GATA1 Transcription Factor - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Genetic engineering</topic><topic>Glycoproteins</topic><topic>Hemopoiesis</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Oral administration</topic><topic>Protein Multimerization - drug effects</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Receptors, Erythropoietin - biosynthesis</topic><topic>Receptors, Erythropoietin - genetics</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Studies</topic><topic>Tacrolimus - administration & dosage</topic><topic>Tacrolimus - analogs & derivatives</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>University graduates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Norio</creatorcontrib><creatorcontrib>Mukai, Harumi Y</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Norio</au><au>Mukai, Harumi Y</au><au>Yamamoto, Masayuki</au><au>Moura, Ivan Cruz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo regulation of erythropoiesis by chemically inducible dimerization of the erythropoietin receptor intracellular domain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-19</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0119442</spage><epage>e0119442</epage><pages>e0119442-e0119442</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Erythropoietin (Epo) and its receptor (EpoR) are required for the regulation of erythropoiesis. Epo binds to the EpoR homodimer on the surface of erythroid progenitors and erythroblasts, and positions the intracellular domains of the homodimer to be in close proximity with each other. This conformational change is sufficient for the initiation of Epo-EpoR signal transduction. Here, we established a system of chemically regulated erythropoiesis in transgenic mice expressing a modified EpoR intracellular domain (amino acids 247-406) in which dimerization is induced using a specific compound (chemical inducer of dimerization, CID). Erythropoiesis is reversibly induced by oral administration of the CID to the transgenic mice. Because transgene expression is limited to hematopoietic cells by the Gata1 gene regulatory region, the effect of the CID is limited to erythropoiesis without adverse effects. Additionally, we show that the 160 amino acid sequence is the minimal essential domain of EpoR for intracellular signaling of chemically inducible erythropoiesis in vivo. We propose that the CID-dependent dimerization system combined with the EpoR intracellular domain and the Gata1 gene regulatory region generates a novel peroral strategy for the treatment of anemia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25790231</pmid><doi>10.1371/journal.pone.0119442</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-03, Vol.10 (3), p.e0119442-e0119442 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1664782743 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amino acid sequence Amino Acid Sequence - genetics Amino acids Anemia Anemia - drug therapy Anemia - genetics Animals Biochemistry Cellular signal transduction Cytokines Dimerization Erythroblasts Erythropoiesis Erythropoiesis - drug effects Erythropoiesis - genetics Erythropoietin Erythropoietin - biosynthesis Erythropoietin - genetics GATA-1 protein GATA1 Transcription Factor - genetics Gene expression Gene Expression Regulation, Developmental - drug effects Genetic engineering Glycoproteins Hemopoiesis Intracellular Intracellular signalling Kinases Laboratory animals Medicine Mice Mice, Transgenic Oral administration Protein Multimerization - drug effects Protein Structure, Tertiary Proteins Receptors, Erythropoietin - biosynthesis Receptors, Erythropoietin - genetics Rodents Signal transduction Signal Transduction - drug effects Signal Transduction - genetics Studies Tacrolimus - administration & dosage Tacrolimus - analogs & derivatives Transgenic animals Transgenic mice University graduates |
title | In vivo regulation of erythropoiesis by chemically inducible dimerization of the erythropoietin receptor intracellular domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20regulation%20of%20erythropoiesis%20by%20chemically%20inducible%20dimerization%20of%20the%20erythropoietin%20receptor%20intracellular%20domain&rft.jtitle=PloS%20one&rft.au=Suzuki,%20Norio&rft.date=2015-03-19&rft.volume=10&rft.issue=3&rft.spage=e0119442&rft.epage=e0119442&rft.pages=e0119442-e0119442&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0119442&rft_dat=%3Cgale_plos_%3EA423858938%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-37cfa554b4ea19307084a9c5138226946987c98a47e1fe69879890d9ba17d4ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664782743&rft_id=info:pmid/25790231&rft_galeid=A423858938&rfr_iscdi=true |