Loading…

ICan: an integrated co-alteration network to identify ovarian cancer-related genes

Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-03, Vol.10 (3), p.e0116095
Main Authors: Zhou, Yuanshuai, Liu, Yongjing, Li, Kening, Zhang, Rui, Qiu, Fujun, Zhao, Ning, Xu, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013
cites cdi_FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013
container_end_page
container_issue 3
container_start_page e0116095
container_title PloS one
container_volume 10
creator Zhou, Yuanshuai
Liu, Yongjing
Li, Kening
Zhang, Rui
Qiu, Fujun
Zhao, Ning
Xu, Yan
description Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.
doi_str_mv 10.1371/journal.pone.0116095
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1666309556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422370683</galeid><doaj_id>oai_doaj_org_article_596a4d71ba304d569b0ed053c528000a</doaj_id><sourcerecordid>A422370683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguBFx3x36oWwDH4MLCysH7chk7ztZOwkY5Ku7r83s9NdpqAguWj69jmnL4dTFM8xmmFa47cbPwSn-tnOO5ghjAVq-IPiFDeUVIIg-vDoflI8iXGDEKdzIR4XJ4TPERWYnRZXy4Vy70rlSusSdEElMKX2leoT5BfrXekg_fLhR5l8aQ24ZNub0l-rYLNIK6chVAH6W2EHDuLT4lGr-gjPxudZ8e3jh6-Lz9XF5afl4vyi0qIhqWp5TRG0BNDKGGZEw_GccGOERo1mlLCWKNY0uG4RwkRpQMoopmkLhlOOMD0rXh58d72PcowjSiyEoDkLLjKxPBDGq43cBbtV4UZ6ZeXtwIdOqpCs7kHyRihmarxSFDHDRbNCYHJempM5Qkhlr_fj34bVFozOQQTVT0ynX5xdy85fS0ZrQvB-mVejQfA_B4jpHyuPVKfyVta1PpvprY1anjNCaI3EnGZq9hcqHwNbq3MhWpvnE8GbiSAzCX6nTg0xyuWXq_9nL79P2ddH7BpybdbR98O-OHEKsgOog48xQHufHEZy3-e7NOS-z3Lsc5a9OE79XnRXYPoH0bzvXA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666309556</pqid></control><display><type>article</type><title>ICan: an integrated co-alteration network to identify ovarian cancer-related genes</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Zhou, Yuanshuai ; Liu, Yongjing ; Li, Kening ; Zhang, Rui ; Qiu, Fujun ; Zhao, Ning ; Xu, Yan</creator><contributor>Kaderali, Lars</contributor><creatorcontrib>Zhou, Yuanshuai ; Liu, Yongjing ; Li, Kening ; Zhang, Rui ; Qiu, Fujun ; Zhao, Ning ; Xu, Yan ; Kaderali, Lars</creatorcontrib><description>Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0116095</identifier><identifier>PMID: 25803614</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Angiogenesis ; Apoptosis ; Bioinformatics ; BRCA1 protein ; Breast cancer ; Cancer ; Cancer genetics ; Carcinogenesis ; Carcinogens ; Computational Biology - methods ; Copy number ; Data analysis ; Data processing ; Databases, Genetic ; DNA Copy Number Variations ; DNA Methylation ; EphA2 protein ; Female ; Fibroblasts ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes ; Genetic aspects ; Genomes ; Gynecology ; Humans ; Kaplan-Meier Estimate ; Medical prognosis ; Medical research ; Metastasis ; Methods ; Methylation ; Mutation ; Oncogenes ; Ovarian cancer ; Ovarian carcinoma ; Ovarian Neoplasms - genetics ; Ovarian Neoplasms - mortality ; p53 Protein ; Pathology ; Prognosis ; Proteins ; PTEN protein ; Science ; Survival analysis ; Tumor proteins ; Tumor suppressor genes ; Tumorigenesis ; Workflow</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0116095</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Zhou et al 2015 Zhou et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013</citedby><cites>FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1666309556/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1666309556?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25803614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kaderali, Lars</contributor><creatorcontrib>Zhou, Yuanshuai</creatorcontrib><creatorcontrib>Liu, Yongjing</creatorcontrib><creatorcontrib>Li, Kening</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Qiu, Fujun</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>ICan: an integrated co-alteration network to identify ovarian cancer-related genes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Apoptosis</subject><subject>Bioinformatics</subject><subject>BRCA1 protein</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Computational Biology - methods</subject><subject>Copy number</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Databases, Genetic</subject><subject>DNA Copy Number Variations</subject><subject>DNA Methylation</subject><subject>EphA2 protein</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Gynecology</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Methylation</subject><subject>Mutation</subject><subject>Oncogenes</subject><subject>Ovarian cancer</subject><subject>Ovarian carcinoma</subject><subject>Ovarian Neoplasms - genetics</subject><subject>Ovarian Neoplasms - mortality</subject><subject>p53 Protein</subject><subject>Pathology</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>PTEN protein</subject><subject>Science</subject><subject>Survival analysis</subject><subject>Tumor proteins</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Workflow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguBFx3x36oWwDH4MLCysH7chk7ztZOwkY5Ku7r83s9NdpqAguWj69jmnL4dTFM8xmmFa47cbPwSn-tnOO5ghjAVq-IPiFDeUVIIg-vDoflI8iXGDEKdzIR4XJ4TPERWYnRZXy4Vy70rlSusSdEElMKX2leoT5BfrXekg_fLhR5l8aQ24ZNub0l-rYLNIK6chVAH6W2EHDuLT4lGr-gjPxudZ8e3jh6-Lz9XF5afl4vyi0qIhqWp5TRG0BNDKGGZEw_GccGOERo1mlLCWKNY0uG4RwkRpQMoopmkLhlOOMD0rXh58d72PcowjSiyEoDkLLjKxPBDGq43cBbtV4UZ6ZeXtwIdOqpCs7kHyRihmarxSFDHDRbNCYHJempM5Qkhlr_fj34bVFozOQQTVT0ynX5xdy85fS0ZrQvB-mVejQfA_B4jpHyuPVKfyVta1PpvprY1anjNCaI3EnGZq9hcqHwNbq3MhWpvnE8GbiSAzCX6nTg0xyuWXq_9nL79P2ddH7BpybdbR98O-OHEKsgOog48xQHufHEZy3-e7NOS-z3Lsc5a9OE79XnRXYPoH0bzvXA</recordid><startdate>20150324</startdate><enddate>20150324</enddate><creator>Zhou, Yuanshuai</creator><creator>Liu, Yongjing</creator><creator>Li, Kening</creator><creator>Zhang, Rui</creator><creator>Qiu, Fujun</creator><creator>Zhao, Ning</creator><creator>Xu, Yan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150324</creationdate><title>ICan: an integrated co-alteration network to identify ovarian cancer-related genes</title><author>Zhou, Yuanshuai ; Liu, Yongjing ; Li, Kening ; Zhang, Rui ; Qiu, Fujun ; Zhao, Ning ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Apoptosis</topic><topic>Bioinformatics</topic><topic>BRCA1 protein</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Computational Biology - methods</topic><topic>Copy number</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Databases, Genetic</topic><topic>DNA Copy Number Variations</topic><topic>DNA Methylation</topic><topic>EphA2 protein</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Gynecology</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Methylation</topic><topic>Mutation</topic><topic>Oncogenes</topic><topic>Ovarian cancer</topic><topic>Ovarian carcinoma</topic><topic>Ovarian Neoplasms - genetics</topic><topic>Ovarian Neoplasms - mortality</topic><topic>p53 Protein</topic><topic>Pathology</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>PTEN protein</topic><topic>Science</topic><topic>Survival analysis</topic><topic>Tumor proteins</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuanshuai</creatorcontrib><creatorcontrib>Liu, Yongjing</creatorcontrib><creatorcontrib>Li, Kening</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Qiu, Fujun</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuanshuai</au><au>Liu, Yongjing</au><au>Li, Kening</au><au>Zhang, Rui</au><au>Qiu, Fujun</au><au>Zhao, Ning</au><au>Xu, Yan</au><au>Kaderali, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICan: an integrated co-alteration network to identify ovarian cancer-related genes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-24</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0116095</spage><pages>e0116095-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25803614</pmid><doi>10.1371/journal.pone.0116095</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0116095
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1666309556
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Analysis
Angiogenesis
Apoptosis
Bioinformatics
BRCA1 protein
Breast cancer
Cancer
Cancer genetics
Carcinogenesis
Carcinogens
Computational Biology - methods
Copy number
Data analysis
Data processing
Databases, Genetic
DNA Copy Number Variations
DNA Methylation
EphA2 protein
Female
Fibroblasts
Gene expression
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Genes
Genetic aspects
Genomes
Gynecology
Humans
Kaplan-Meier Estimate
Medical prognosis
Medical research
Metastasis
Methods
Methylation
Mutation
Oncogenes
Ovarian cancer
Ovarian carcinoma
Ovarian Neoplasms - genetics
Ovarian Neoplasms - mortality
p53 Protein
Pathology
Prognosis
Proteins
PTEN protein
Science
Survival analysis
Tumor proteins
Tumor suppressor genes
Tumorigenesis
Workflow
title ICan: an integrated co-alteration network to identify ovarian cancer-related genes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICan:%20an%20integrated%20co-alteration%20network%20to%20identify%20ovarian%20cancer-related%20genes&rft.jtitle=PloS%20one&rft.au=Zhou,%20Yuanshuai&rft.date=2015-03-24&rft.volume=10&rft.issue=3&rft.spage=e0116095&rft.pages=e0116095-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0116095&rft_dat=%3Cgale_plos_%3EA422370683%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-f5730ef2e0bdd4d6951825dd6c09c4324f2a49917f0012ace0ada4c3fed535013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1666309556&rft_id=info:pmid/25803614&rft_galeid=A422370683&rfr_iscdi=true