Loading…

Irreversible collective migration of cyanobacteria in eutrophic conditions

In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-03, Vol.10 (3), p.e0120906-e0120906
Main Authors: Dervaux, Julien, Mejean, Annick, Brunet, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3
cites cdi_FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3
container_end_page e0120906
container_issue 3
container_start_page e0120906
container_title PloS one
container_volume 10
creator Dervaux, Julien
Mejean, Annick
Brunet, Philippe
description In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS). Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO) to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration) we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an efficient method for biomass harvesting in bioreactors.
doi_str_mv 10.1371/journal.pone.0120906
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1667181135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422548473</galeid><doaj_id>oai_doaj_org_article_3d217e5acbb849499d10649c45c9d43e</doaj_id><sourcerecordid>A422548473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsFYL5Lpy5J8MwhlWzMChX3dClk-ThQUK5PssP77KYlb4tKLoQuL4-d9Jb3SybLXGE0xFfjj2veh1W669S1MESaoRPxJdo5LSiacIPr0ZH6WvYhxjVBBJefPszNSiLJkhJ1n3-YhwA5CtJWD3HjnwHR2B_nGLoPurG9z3-TmVre-0qaDYHVu2xz6LvjtypokaWu75-LL7FmjXYRXw_ci-_Xl88-r68ni5uv8araYGEF4NykbAjVIRirKGilqoEZDSSVlCHiFDeG45ITigmlAukI1w0IyyWpZpDlU9CJ7e_TdOh_VEENUmHOBJca0SMT8SNRer9U22I0Ot8prqw4FH5ZKh84aB4rWBAsotKkqyUpWljVGnJWGFaasGYXk9WlYra82UBtou6DdyHT8p7UrtfQ7xahAgpJkcHk0WD2QXc8Wal9DGHNKC7nDif0wLBb8nx5ipzY2GnBOt-D7wxm5IEwKmdB3D9DHkxiopU6HtW3j0x7N3lTNGCFFylXQRE0fodKoYWPTBUNjU30kuBwJEtPB326p-xjV_Mf3_2dvfo_Z9yfsCrTrVtG7_vC-xiA7gib4GAM098lipPbtcZeG2reHGtojyd6cXua96K4f6D_MmQkO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667181135</pqid></control><display><type>article</type><title>Irreversible collective migration of cyanobacteria in eutrophic conditions</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Dervaux, Julien ; Mejean, Annick ; Brunet, Philippe</creator><contributor>Chauvat, Franck</contributor><creatorcontrib>Dervaux, Julien ; Mejean, Annick ; Brunet, Philippe ; Chauvat, Franck</creatorcontrib><description>In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS). Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO) to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration) we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an efficient method for biomass harvesting in bioreactors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0120906</identifier><identifier>PMID: 25799424</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aquatic environment ; Aquatic microorganisms ; Biological Physics ; Biomass ; Bioreactors ; Bubbles ; Carbon ; Cell division ; Climate change ; Condensed Matter ; Cyanobacteria ; Diderot, Denis (1713-1784) ; Dissolved oxygen ; Dose-Response Relationship, Drug ; Dose-Response Relationship, Radiation ; Ecosystems ; Environmental changes ; Environmental conditions ; Eutrophic environments ; Eutrophic waters ; Eutrophication ; Eutrophication - drug effects ; Eutrophication - radiation effects ; Experiments ; Extracellular Space - drug effects ; Extracellular Space - metabolism ; Extracellular Space - radiation effects ; Flocculation ; Fluid Dynamics ; Fluid mechanics ; Free surfaces ; Global climate ; Harvesting ; Hydrodynamics ; Laboratories ; Light ; Light intensity ; Luminous intensity ; Mechanics ; Microcystis ; Microcystis - cytology ; Microcystis - drug effects ; Microcystis - growth &amp; development ; Microcystis - radiation effects ; Microcystis aeruginosa ; Microorganisms ; Movement ; Nonlinear Sciences ; Nutrient concentrations ; Nutrients ; Oxygen ; Oxygen - chemistry ; Pattern Formation and Solitons ; Photosynthesis ; Physics ; Salts - pharmacology ; Soft Condensed Matter ; Strains (organisms) ; Synechocystis ; Synechocystis - cytology ; Synechocystis - drug effects ; Synechocystis - growth &amp; development ; Synechocystis - radiation effects ; Time Factors ; Tubes ; Water quality ; Water resources</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0120906-e0120906</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Dervaux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2015 Dervaux et al 2015 Dervaux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3</citedby><cites>FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3</cites><orcidid>0009-0003-5170-8092 ; 0000-0002-2878-4279 ; 0000-0001-8487-5362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1667181135/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1667181135?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25799424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01163358$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Chauvat, Franck</contributor><creatorcontrib>Dervaux, Julien</creatorcontrib><creatorcontrib>Mejean, Annick</creatorcontrib><creatorcontrib>Brunet, Philippe</creatorcontrib><title>Irreversible collective migration of cyanobacteria in eutrophic conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS). Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO) to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration) we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an efficient method for biomass harvesting in bioreactors.</description><subject>Aquatic environment</subject><subject>Aquatic microorganisms</subject><subject>Biological Physics</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Bubbles</subject><subject>Carbon</subject><subject>Cell division</subject><subject>Climate change</subject><subject>Condensed Matter</subject><subject>Cyanobacteria</subject><subject>Diderot, Denis (1713-1784)</subject><subject>Dissolved oxygen</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Eutrophic environments</subject><subject>Eutrophic waters</subject><subject>Eutrophication</subject><subject>Eutrophication - drug effects</subject><subject>Eutrophication - radiation effects</subject><subject>Experiments</subject><subject>Extracellular Space - drug effects</subject><subject>Extracellular Space - metabolism</subject><subject>Extracellular Space - radiation effects</subject><subject>Flocculation</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Global climate</subject><subject>Harvesting</subject><subject>Hydrodynamics</subject><subject>Laboratories</subject><subject>Light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Mechanics</subject><subject>Microcystis</subject><subject>Microcystis - cytology</subject><subject>Microcystis - drug effects</subject><subject>Microcystis - growth &amp; development</subject><subject>Microcystis - radiation effects</subject><subject>Microcystis aeruginosa</subject><subject>Microorganisms</subject><subject>Movement</subject><subject>Nonlinear Sciences</subject><subject>Nutrient concentrations</subject><subject>Nutrients</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Pattern Formation and Solitons</subject><subject>Photosynthesis</subject><subject>Physics</subject><subject>Salts - pharmacology</subject><subject>Soft Condensed Matter</subject><subject>Strains (organisms)</subject><subject>Synechocystis</subject><subject>Synechocystis - cytology</subject><subject>Synechocystis - drug effects</subject><subject>Synechocystis - growth &amp; development</subject><subject>Synechocystis - radiation effects</subject><subject>Time Factors</subject><subject>Tubes</subject><subject>Water quality</subject><subject>Water resources</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsFYL5Lpy5J8MwhlWzMChX3dClk-ThQUK5PssP77KYlb4tKLoQuL4-d9Jb3SybLXGE0xFfjj2veh1W669S1MESaoRPxJdo5LSiacIPr0ZH6WvYhxjVBBJefPszNSiLJkhJ1n3-YhwA5CtJWD3HjnwHR2B_nGLoPurG9z3-TmVre-0qaDYHVu2xz6LvjtypokaWu75-LL7FmjXYRXw_ci-_Xl88-r68ni5uv8araYGEF4NykbAjVIRirKGilqoEZDSSVlCHiFDeG45ITigmlAukI1w0IyyWpZpDlU9CJ7e_TdOh_VEENUmHOBJca0SMT8SNRer9U22I0Ot8prqw4FH5ZKh84aB4rWBAsotKkqyUpWljVGnJWGFaasGYXk9WlYra82UBtou6DdyHT8p7UrtfQ7xahAgpJkcHk0WD2QXc8Wal9DGHNKC7nDif0wLBb8nx5ipzY2GnBOt-D7wxm5IEwKmdB3D9DHkxiopU6HtW3j0x7N3lTNGCFFylXQRE0fodKoYWPTBUNjU30kuBwJEtPB326p-xjV_Mf3_2dvfo_Z9yfsCrTrVtG7_vC-xiA7gib4GAM098lipPbtcZeG2reHGtojyd6cXua96K4f6D_MmQkO</recordid><startdate>20150323</startdate><enddate>20150323</enddate><creator>Dervaux, Julien</creator><creator>Mejean, Annick</creator><creator>Brunet, Philippe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-5170-8092</orcidid><orcidid>https://orcid.org/0000-0002-2878-4279</orcidid><orcidid>https://orcid.org/0000-0001-8487-5362</orcidid></search><sort><creationdate>20150323</creationdate><title>Irreversible collective migration of cyanobacteria in eutrophic conditions</title><author>Dervaux, Julien ; Mejean, Annick ; Brunet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aquatic environment</topic><topic>Aquatic microorganisms</topic><topic>Biological Physics</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Bubbles</topic><topic>Carbon</topic><topic>Cell division</topic><topic>Climate change</topic><topic>Condensed Matter</topic><topic>Cyanobacteria</topic><topic>Diderot, Denis (1713-1784)</topic><topic>Dissolved oxygen</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Eutrophic environments</topic><topic>Eutrophic waters</topic><topic>Eutrophication</topic><topic>Eutrophication - drug effects</topic><topic>Eutrophication - radiation effects</topic><topic>Experiments</topic><topic>Extracellular Space - drug effects</topic><topic>Extracellular Space - metabolism</topic><topic>Extracellular Space - radiation effects</topic><topic>Flocculation</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Global climate</topic><topic>Harvesting</topic><topic>Hydrodynamics</topic><topic>Laboratories</topic><topic>Light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Mechanics</topic><topic>Microcystis</topic><topic>Microcystis - cytology</topic><topic>Microcystis - drug effects</topic><topic>Microcystis - growth &amp; development</topic><topic>Microcystis - radiation effects</topic><topic>Microcystis aeruginosa</topic><topic>Microorganisms</topic><topic>Movement</topic><topic>Nonlinear Sciences</topic><topic>Nutrient concentrations</topic><topic>Nutrients</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Pattern Formation and Solitons</topic><topic>Photosynthesis</topic><topic>Physics</topic><topic>Salts - pharmacology</topic><topic>Soft Condensed Matter</topic><topic>Strains (organisms)</topic><topic>Synechocystis</topic><topic>Synechocystis - cytology</topic><topic>Synechocystis - drug effects</topic><topic>Synechocystis - growth &amp; development</topic><topic>Synechocystis - radiation effects</topic><topic>Time Factors</topic><topic>Tubes</topic><topic>Water quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dervaux, Julien</creatorcontrib><creatorcontrib>Mejean, Annick</creatorcontrib><creatorcontrib>Brunet, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dervaux, Julien</au><au>Mejean, Annick</au><au>Brunet, Philippe</au><au>Chauvat, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irreversible collective migration of cyanobacteria in eutrophic conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-23</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0120906</spage><epage>e0120906</epage><pages>e0120906-e0120906</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS). Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO) to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration) we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an efficient method for biomass harvesting in bioreactors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25799424</pmid><doi>10.1371/journal.pone.0120906</doi><orcidid>https://orcid.org/0009-0003-5170-8092</orcidid><orcidid>https://orcid.org/0000-0002-2878-4279</orcidid><orcidid>https://orcid.org/0000-0001-8487-5362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0120906-e0120906
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1667181135
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Aquatic environment
Aquatic microorganisms
Biological Physics
Biomass
Bioreactors
Bubbles
Carbon
Cell division
Climate change
Condensed Matter
Cyanobacteria
Diderot, Denis (1713-1784)
Dissolved oxygen
Dose-Response Relationship, Drug
Dose-Response Relationship, Radiation
Ecosystems
Environmental changes
Environmental conditions
Eutrophic environments
Eutrophic waters
Eutrophication
Eutrophication - drug effects
Eutrophication - radiation effects
Experiments
Extracellular Space - drug effects
Extracellular Space - metabolism
Extracellular Space - radiation effects
Flocculation
Fluid Dynamics
Fluid mechanics
Free surfaces
Global climate
Harvesting
Hydrodynamics
Laboratories
Light
Light intensity
Luminous intensity
Mechanics
Microcystis
Microcystis - cytology
Microcystis - drug effects
Microcystis - growth & development
Microcystis - radiation effects
Microcystis aeruginosa
Microorganisms
Movement
Nonlinear Sciences
Nutrient concentrations
Nutrients
Oxygen
Oxygen - chemistry
Pattern Formation and Solitons
Photosynthesis
Physics
Salts - pharmacology
Soft Condensed Matter
Strains (organisms)
Synechocystis
Synechocystis - cytology
Synechocystis - drug effects
Synechocystis - growth & development
Synechocystis - radiation effects
Time Factors
Tubes
Water quality
Water resources
title Irreversible collective migration of cyanobacteria in eutrophic conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irreversible%20collective%20migration%20of%20cyanobacteria%20in%20eutrophic%20conditions&rft.jtitle=PloS%20one&rft.au=Dervaux,%20Julien&rft.date=2015-03-23&rft.volume=10&rft.issue=3&rft.spage=e0120906&rft.epage=e0120906&rft.pages=e0120906-e0120906&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0120906&rft_dat=%3Cgale_plos_%3EA422548473%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-9f2ede842b34f87de3cae938340e6b1c2619623154ae0ab0d4178484d850d4eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1667181135&rft_id=info:pmid/25799424&rft_galeid=A422548473&rfr_iscdi=true