Loading…

From benchtop to desktop: important considerations when designing amplicon sequencing workflows

Amplicon sequencing has been the method of choice in many high-throughput DNA sequencing (HTS) applications. To date there has been a heavy focus on the means by which to analyse the burgeoning amount of data afforded by HTS. In contrast, there has been a distinct lack of attention paid to considera...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-04, Vol.10 (4), p.e0124671-e0124671
Main Authors: Murray, Dáithí C, Coghlan, Megan L, Bunce, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amplicon sequencing has been the method of choice in many high-throughput DNA sequencing (HTS) applications. To date there has been a heavy focus on the means by which to analyse the burgeoning amount of data afforded by HTS. In contrast, there has been a distinct lack of attention paid to considerations surrounding the importance of sample preparation and the fidelity of library generation. No amount of high-end bioinformatics can compensate for poorly prepared samples and it is therefore imperative that careful attention is given to sample preparation and library generation within workflows, especially those involving multiple PCR steps. This paper redresses this imbalance by focusing on aspects pertaining to the benchtop within typical amplicon workflows: sample screening, the target region, and library generation. Empirical data is provided to illustrate the scope of the problem. Lastly, the impact of various data analysis parameters is also investigated in the context of how the data was initially generated. It is hoped this paper may serve to highlight the importance of pre-analysis workflows in achieving meaningful, future-proof data that can be analysed appropriately. As amplicon sequencing gains traction in a variety of diagnostic applications from forensics to environmental DNA (eDNA) it is paramount workflows and analytics are both fit for purpose.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0124671